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Abstract

Localization based on wireless sensor networks has been shown to be a
promising application in ships. Although a considerable number of algo-
rithms have been designed for low-overhead and high-accuracy localization,
some problems have been ignored, such as interference in the shipboard en-
vironment and the method of using anchor-deploying. In this paper, we
present a method for range-free localization called fault-tolerant area divi-
sion (FAD) to deploy and divide the area in which precise indoor localization
is required. Despite the limitations with respect to shipboard environmen-
tal interference, sensing irregularity, received signal strength variation, and
other unavoidable factors, FAD has been shown to be reliable by improving
the fault-tolerant mechanism. In addition, to address the scheme of anchor-
node placement, which complicates the localization performance, this paper
presents a new deployment strategy for the anchor nodes using optimization
methods. This paper presents and analyzes an enhancement method using a
series of simulations and real-world ship experiments. The result shows that
a well-organized deployment and a fault-tolerant mechanism can make such
localization method more reliable and compatible.
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1. Introduction

As cruise vessels and passenger ships are widely used for commercial
purposes such as transporting passengers and cargo, there has been an in-
creasing demand for automation techniques in ships that improve the ships
operation and intelligent monitoring[1]. There have been several previous
cases that have highlighted how complex and chaotic the movement of peo-
ple on a large vessel can be during emergency situations. An accurate and
pervasive shipboard indoor localization system for crew members and passen-
gers would enable a rapid response to emergency incidents, and dramatically
reduce the time needed to bring the ship under control[2]. Currently, the
global positioning system (GPS) is the most effective positioning technology
in outdoor environments. However, it has some weaknesses, such as being
easily blocked by steel and poor signal strength in the shipboard indoor
environment[3]. These have led to the development of indoor localization
techniques such as radio-frequency ID (RFID), ultrawideband (UWB), and
received signal strength indication (RSSI)[4] [5]. Among these technologies,
wireless sensor networks (WSNs), which have been universally motivated by
area surveillance applications, have been considered for deployment in the
shipboard environment, and have been used for applications to localize ob-
jects and ensure the safety[6]. In addition, there is an increasing demand
for low-cost and high-accuracy solutions as several WSN-based localization
methods have emerged over the years.

In general, WSN-based localization mechanisms fall into two categories:
range-free[7] [8], and range-based[9]. The range-based methods mainly utilize
the RSSI to estimate the range from wireless base stations (called anchors) in
order to calculate the location of target nodes (or unknown nodes). To obtain
the precise range information, complex models for signal propagation[10][11],
specialized time-synchronization hardware[4] [12] [13], and dedicated analy-
sis for non-line of sight (NLOS) signal propagation[14] are required. While
range-based methods require expensive hardware and high computation cost,
range-free methods, which require less range information, are more suitable
for large-scale sensor networks[15]. The range-free method has been studied
in many algorithms, such as fingerprint techniques[16] [17], wireless connec-
tivity [18] [19] [20], anchor proximity[11], and landmarks[21] [22]. Among
them, fingerprint-based techniques focus on the radio statistic features of
the localization space, and they require the extensive exploitation of existing
infrastructures[23]. Wireless connectivity methods, such as DV-Hop[19], use
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local sensing to estimate the virtual distances of the anchors in large-scale
sensor network localization. Wireless local area network (LAN) controllers
(WLCs)[11] use RSSI as the weight to calculate the centroid of neighbor an-
chors, and to achieve high accuracy. In fact, most of these methods can be
severely affected by the dynamic shipboard environment. The localization
accuracy can be significantly degraded owing to the poor signal strength as
a result of shielding by the steel framework of ships. In addition, they do not
consider that the deployment of anchor nodes is important to the robustness
of range-free localization schemes used in narrow enclosed spaces.

The phenomenon in shipboard environments is clearly different from the
traditional indoor environment. In a real shipboard environment, the decks
and walls are steel frames that generate different multipath effects and lead
to severe reflection of wireless signals[24] [25]. Meanwhile, signal propaga-
tion suffers from dynamic changes during a given voyage, including tran-
sient interferences, such as moving subjects, opening and closing doors, and
prolonged changes in terms of the ship speed, temperature, humidity, and
weather conditions. Therefore, the RSSI in the shipboard is considered to
be a complex combination of many factors, such as radio path-loss factors,
metal reflection, multi-path effects, and ship engine noise[10] [26], and it is
complicated to use it to obtain localization signatures. Unfortunately, most
of the proposed localization methods are based on the general assumption
that the environment is interference-scarce . These algorithms cannot achieve
high performance where RSSI signals are so unreliable, and they are prone to
be disturbed in the shipboard environments. Our work is motivated by the
observation that the localization signal may suffer from the severe RF fading
problem in shipboard environments, and deals with this problem effectively
by using the high–low relationship of RSSI and a fault-tolerant mechanism.

In this paper, we first study the shipboard environment and propose a
new lightweight localization method that is called fault-tolerant area division
(FAD), based on the high–low relationship of RSSI. First, we study the rela-
tionship between RSSI and the physical distance in shipboard scenarios based
on applying the model-fitting technique, and we observe that the fallibility
and fuzzy boundaries problem existed. Second, FAD focuses on the high–
low relationship instead of the absolute value of the RSSI, and divides the
whole shipboard environment into several subareas that are marked by dif-
ferent unique RSSI-distance relations. To take advantage of the area-division
model, a fault-tolerant mechanism is presented to achieve a fine-grid localiza-
tion result that makes the algorithm less likely to be affected by the RF-fading
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and boundary-fuzziness problems. Third, to enhance the performance of FAD
in the shipboard environment, we optimize the anchor placements and avoid
the problem of vicious subareas. The heterogeneity of subareas, which can
be theoretically analyzed by the subarea standard deviation and convergence
level, can improve the localization accuracy significantly. Finally, the simu-
lation and experiment results indicate that FAD provides a better accuracy
than the other four state-of-the-art range-free localization techniques over a
range of node-deployment conditions. The proposed method improves the
range-free localization accuracy based on RSSI with reduced workload, and
it can be applied to shipboard indoor localization applications appropriately.
The main contributions of this study are as follows: The main contributions
are as follows:

1. Localization based on WSNs may suffer from severe disturbances in the
shipboard environment, where the RSSI is affected by the steel structure
and dynamics of the shipboard environment. We propose FAD based on
the high–low relationship between RSSI pairs instead of absolute RSSI
values, which is less affected by the RF interference.

2. According to the structure of real-world ships, FAD divides the whole
shipboard space into several subareas that are marked by different unique
RSSI relations. In addition, a fault-tolerant mechanism is proposed to
take advantage of the fallible localization subarea, and more accurate lo-
calization results can be achieved.

3. To enhance the robustness of FAD, we propose an anchor deployment
strategy that utilizes the optimization method to achieve a minimum stan-
dard deviation of all subareas as well as to maintain the maximum number
of subareas.

The rest of the paper is organized as follows. Section 2 briefly describes
the theoretic basis of the FAD. Section 3 explores the main challenges that
are associated with shipboard localization methods. In Section 4, details of
the solutions and the system design are presented. Sections 5 and 6 evaluate
the method with extensive simulations, and make several comparisons with
the state-of-the-art localization algorithm. Section 7 presents the related
works, and Section 8 concludes the paper.
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2. Theoretic Basis of FAD

This section briefly describes two ideas: the propagation model of wireless
signals in the shipboard environment and the area-division model, which are
the basis of the FAD. First, we conducted several experiments in a ship and
found that the relative RSSI from anchor nodes can be utilized to mark dif-
ferent area locations, as opposed to the actual values. Then, we introduce the
concept of the area-division model, which utilizes the high–low relationship
of RSSIs and the perpendicular bisectors of anchor locations to divide the
area into several subareas that own unique marks. Our discussion starts with
a two-dimensional (2D) paradigm to describe how the area-division model is
used to localize the targets.

2.1. Preliminary Experiments

The RSSI distribution models have been well studied in [10]. According
to the radio propagation model, the path loss in a general location is random
and has a log-normal distribution about the average distance value. The
average commonly used path-loss model is expressed as a function of the
distance as

PL(d) = PL(d0) + 10n log(
d

d0
) +Xσ (1)

where PL(d) represents the path loss. n is the path-loss exponent, which
indicates the rate at which the path loss increases with distance, d is the signal
receiving distance, and d0 = 1m is a reference distance. Xσ is a zero-mean
Gaussian distributed random variable (in dBm) with standard deviation σ.

We performed several experiments to estimate the average losses in a
passenger ship called “M.S.Yangtze 2,” as shown in Fig. 1. Experiments
were carried out in several typical shipboard scenarios, such as on the sun
deck, a dining hall, a corridor, and an emergency gangway. Fig. 3 shows the
measurement data and corresponding distance for the path losses in the above
environments. A nonlinear regression with the target function of a minimum
mean-square error is utilized to determine the path-loss parameters of each
shipboard environment. The path-loss parameters are shown in Table 1.

As can be seen, shipboard scenarios share different signal propagation
parameters. The range-based methods, which utilize RSSI to estimate the
range from anchors, are not workable in the shipboard environments. Instead,
a relationship model, where the RSSI is inversely proportional to the distance,

5



Figure 1: The Experiment passenger ship M.S.Yangtze 2.

(a) Sun deck (b) Central hall

(c) Corridor (d) Emergency gangway

Figure 2: Different experiment scenarios in M.S.Yangtze 2.
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(b) Central hall
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(c) Corridor
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(d) Emergency gangway

Figure 3: RSSI Measurements with different distances.

Table 1: Path loss parameters in different shipboard scenarios.

Scenarios n σ γ PL(d0)

Corridor -1.7 8.06 0.80 -7.7

Central hall -1.4 7.13 0.83 -9

Dining hall -0.9 5.16 0.66 -8

Passenger cabin -0.8 4.67 0.62 -8.9
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is shown in our results. The high–low relationship of RSSI can be more
reliable than the actual values to indicate the location signature. We can use
this property to mark locations and realize the location discovery.

2.2. Area Division model

In this section, we define the area-division model and illustrate them using
examples. As shown in Fig. 4, the proposed model consists of two critical
components: the map division and the RSSI signatures used in localization.
The area-division model divides the localization space into several subareas
based on the location of anchors, and the space is marked with corresponding
RSSI high–low relations. By measuring the RSSIs from available anchors,
the physical information can be converted into RSSI signatures, and we can
determine the subarea to which the unknown node belongs. To illustrate our
concept, we start from a basic scenario in which there are no barriers between
any anchor pairs. Taking an area with two anchors, P1 and P2, as shown in
Fig. 4(a), the vertical bisector of P1 and P2 divides the localization space into
two subareas, and their relative distances will be computed. Each position
on the left side of the bisector will be closer to anchor P1, which implies that
the RSSI from anchor P1 will be stronger than that from anchor P2. Using
perpendicular bisectors, an area can be divided into several subareas. Each
subarea owns a unique high-dimensional location signature consisting of an
RSSI high–low relationship. Once a target gets into the area, the location
can be computed by comparing the RSSI from each anchor, and determine
the subarea which it belongs. Our discussion starts within the context of
a 2D paradigm, although the algorithm also applies to a three-dimensional
(3D) paradigm. Cases that involve three or more anchor nodes are shown to
be similar.

Definition 1. A Boundary is a vertical bisector of two anchor positions.

Definition 2. A Subarea is an area that is segmented by boundaries.

As the example shows in Fig. 4(a), the boundary L1,2 divides the localiza-
tion space into two distinct subareas. The target node Q1 measures the RSSI
from both anchors (P1 and P2), and obtains RSSIP1 > RSSIP2. According
to the propagation model in Section 2.1, the location of Q1 is close to the
anchor node P1. Therefore, Q1 belongs to the shadow subarea. Similarly,
Fig. 4(b) shows that three anchors (P1, P2, and P3) generate three bound-
aries (L1,2, L1,3, and L2,3) and six subareas. Q2 obtains RSSIP1 > RSSIP2,
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P1

P2

Q1

S0L1,2
Location close 

To P1

(RSSIP1>RSSIP2)

(a) Two anchors

P2

P2

Q2

L2,3

P3

S0L1,2

L1,3

(RSSIP1>RSSIP3>RSSIP2)

(b) Three anchors

Figure 4: Description of the area-division model.

RSSIP1 > RSSIP3, and RSSIP2 < RSSIP3. Therefore, Q2 belongs to the
subarea marked in the figure. Ultimately, the centroid of the subarea is the
estimated location. Based on the above examples, we can conclude that in-
creasing the number of anchor nodes can divide the original space into more
subareas, which can provide a fine-grid location information of the target
nodes.

3. Design Challenges

Although the area-division method avoids most problems that occur in
range-free methods, three main challenges for the proposed method are as
follows.

3.1. Fallibility Boundary

Definition 3. Fallibility Boundaries are two lines parallel to the bound-
ary with a distance of ∆D.

According to the experiment results shown in Section 2.1, the RSSI re-
ceived from two anchors would be similar when the target node is close to
the boundary. Further, the dynamic ship environment would introduce noise
into the RSSI measurement. The target nodes, which lie in the fallibility
boundaries, would receive a converse high–low relationship of the RSSI and
wrongly determine their own subarea. As illustrated in Fig. 5, a boundary
L is drawn based on two anchor nodes P1 and P2, which divides the plane
into two subareas. A target node Q1 lies near to the boundary. The target
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node obtains the RSSIP1 from P1, and RSSIP2 from P2. Owing to the fluc-
tuation in the RSSI values, we may obtain RSSIP1 < RSSIP2, which would
incorrectly determine that node Q1 is in the wrong subarea. The fallibility
boundaries are the dotted lines that bound the fallible localization subarea.

P1 P2

L12

Q1

S1 S2

ΔD12

True 

subarea

False 

subarea

Beacon node

Target node

Fallibility 

boundary

Figure 5: Description of fallibility boundary.

3.2. RSSI Deteriorate

Definition 4. A fuzzy boundary is an arc for which the center is the
anchor node and the radius is the reliable range.

The reliability of RSSI signals will deteriorate rapidly when the distance
exceeds the reliable range. As can be seen in Fig. 3(b), the RSSI value con-
tinues to decrease as the distance increases when the distance is less than 25
m. After that, the RSSI values fluctuate at around -60 dBm. This critical
distance is called the reliable range. When the communication distance ex-
ceeds the reliable range, the variance of RSSI will increase and the high–low
relationship of RSSI will become unreliable. The concept of the fuzzy bound-
ary is illustrated in Fig. 6. The anchor nodes P1 and P2 are deployed on both
sides of the localization space. For the target node Q1, which lies outside of
the fuzzy boundaries of anchors, it is difficult to determine the subarea to
which it belongs. Hence, there is the need for a fault-tolerant design of the
area-division model for shipboard environments. We solve this challenge by
combining the limited prior information and current sensing data to provide
a balanced area division.
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P1
P2

L12
Q1S1 S2

True 

subarea

Beacon node

Target node

Fuzzy boundary

Reliable range

False 

subarea

Figure 6: Description of fuzzy boundary.

3.3. Anchor Node Deployment

Different anchor-deployment strategies would generate different sets of
subareas. The placement of anchors impinges on the number of subareas, and
a greater number of subareas means that there are more precise locations. As
illustrated in Fig. 7, with the same number and density of anchor nodes, the
number and distribution of the subarea vary. We deployed three anchor nodes
in a rectangular space. Fig. 7(a) shows that there are four subareas, each
having an identical shape. In contrast, Fig. 7(b) shows that we can obtain
two more subareas, and Fig. 7(d) shows that we can obtain uniform shapes of
six subareas by adjusting the positions of the anchors. After the simulation,
the result shows that the scheme (a) achieves the worst localization effect,
while that in (b) achieves the best. Therefore, this provides the motivation
for us to search for the optimal anchor deployments. An efficient method of
improving the localization accuracy is to deploy the anchors in a particular
manner, where the number of subareas is as large as possible, and where
they have a uniform shape. To simplify the problem, we choose the standard
deviation of division subareas as a metric in our algorithm. Then, we adopt
similar traversing techniques as we did in the previous section to conduct
experiments.

4. Proposed Method

In this section, we discuss specific solutions for the challenges mentioned
in Section 3. We propose a fault-tolerant mechanism of the fallibility/fuzzy
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P1 P2P3

Q1

(a) Case 1

P1 P2

P3
Q1

(b) Case 2

P1 P2

P3
Q1

(c) Case 3

P1 P2

P3Q1

(d) Case 4

Figure 7: Different anchor deployments.

boundaries, which generates fine-grid subareas and reduces the positioning
error. We also discuss the optimal anchor-deployment strategy.

4.1. Fault-tolerant Model Adjustment

Definition 5. A correcting subarea is an area that is segmented by falli-
bility boundaries and fuzzy boundaries.

A. Fallibility Boundary Mechanism
With the basic theory of the FAD, the position information of an area

can be abstracted to a high–low relationship of RSSI from anchors that have
been deployed. However, the fallibility boundary problem may lead to an
erroneous relationship and an incorrectly estimated subarea. To solve this
problem, we propose a fault-tolerant scheme of the fallibility boundary. Fal-
libility boundaries are two lines that are parallel to the boundary with a
distance of ∆D. The subarea, which is separated by the fallibility boundary,
is identified as a correcting subarea. As shown in Fig. 8, two boundaries
are accompanied by four fallibility boundaries. The 2D space can be divided
into four subareas and five correcting subareas. In the fallibility boundary
mechanism, when there is a large difference between the RSSI values mea-
sured from anchors, the target node location would be the centroid of the
subarea generated by the two anchor node boundaries. Conversely, when the
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RSSI values are similar, the target node location would be the centroid of
the correcting subarea.

P1

P2

P3

P4

Q1

ΔD1,3

Beacon node

Target node

Fallibility 

boundary

Subarea 1

Correcting 

subarea 1

Q2

Subarea 4

MaxError 2

MaxError 1

Figure 8: Fallibility boundary mechanism

In Fig. 8, the target node Q1 obtains the RSSI information for |RSSI1| >
|RSSI3| and |RSSI2| > |RSSI4|. According to the area-division model, the
position of Q1 should be close to P1 and P2. Meanwhile, the absolute values of
the differences in the RSSI can be calculated as follows: |RSSI1−RSSI3| >
∆RSSI1,3 and |RSSI2 − RSSI4| > ∆RSSI2,4. Therefore, the position of
Q1 is outside of the fallibility boundary of L1,3 and L2,4, and it belongs
to subarea 1 shown in shadow area. Similarly, the target node Q2 obtains
the information that |RSSI3| > |RSSI1|, |RSSI4| > |RSSI2|, |RSSI1 −
RSSI3| < ∆RSSI1,3, and |RSSI2 − RSSI4| > ∆RSSI2,4. According to the
model, the position of Q2 is close to P3 and P4, and it lies in the fallibility
boundary of L2,4 and outside of the fallibility boundary of L1,3. The location
of Q2 belongs to the correcting subarea 1 shown in the shadow area.

The distance ∆D is correlated to the distance between the two anchors,
and it is 10%–15% of the distance between anchors P1 and P2. The ∆RSSI
values are shown in Table 2. The fallibility boundary mechanism provides
useful location information for higher accuracy localization.
Proof for Fallibility Boundary Mechanism:

(1) To As seen in the Fig. 8, we find that:

S1 = (d1,3/2)× (d2,4/2)
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Table 2: Relation between the distance of beacon nodes and ∆D.

dP1,P2(m) 1 5 10 20 30

∆D1,2(m) 0.1 0.5 1.2 3 4.5

∆RSSI1,2(dBm) 2 2 2 3 5

S2 = (d1,3/2−∆D1,3/2)× (d2,4/2−∆D2,4/2)

where d13 represents the distance between nodes P1 and P3, and d24
represents the distance between nodes P2 and P4. S1 represents the area
of the primal subarea 1 whose boundaries are L1,3 and L2,4. S2 represents
the area of the new subarea 1 whose boundaries are fallibility boundaries.
Therefore, we find that S1 > S2, and the fallibility boundary mechanism
can achieve a fine-grid localization result.

(2) Denote the maximum location error of S1 as MaxError1. It can be
obtained by calculating the distance from the centroid of the subarea to
its furthest vertex. MaxError2 represents the maximum location error
of S2. We obtain:

MaxError1 =
√

(d24/4)2 + (d13/4)2

MaxError2 =
√

(∆D13)2 + (d24/2−∆D24)2

It is clear that MaxError1 > MaxError2. This proves that the fal-
libility boundary mechanism can provide fine-grid subareas and higher
accuracy.

B. Fuzzy Boundary Mechanism
In this section, we discuss another key technique in FAD, namely the

fuzzy boundary mechanism. We introduce the area-division problem based
on an ideal RSSI distribution assumption. However, the disaffinity distri-
bution of RSSI from different devices shown in Fig. 3 will cause an inaccu-
rate location estimation problem when it comes to a practical application.
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For further discussion, we define the following concept: After anchors with
different RSSI peaks are deployed, the division boundaries will become arcs
rather than straight lines. To solve the deterioration problem associated with
RSSI stability, we proposed a fault-tolerant fuzzy-boundary scheme. Fuzzy
boundaries are arcs that are drawn by the reliable ranges of each anchor.
The subareas are divided by fuzzy boundaries, and new correcting subareas
are generated accordingly. When the RSSI values measured from anchors ex-
ceed the reliable range, the target node location would be the centroid of the
correcting subarea generated by the anchor fuzzy boundaries. By utilizing
the fuzzy boundaries and fallibility boundaries, we can obtain more precise
and more accurate results of localization in the shipboard environment.

P1

P2

P3

P4

Q1

ΔD1,3

ΔD2,4
Q2

Reliable

range

Correcting 

subarea 1

Correcting 

subarea 2

Fallibility 

boundary

Beacon node

Target node

Figure 9: Fuzzy boundary mechanism.

As illustrated in Fig. 9, the target node Q1 obtains the RSSI information
as RSSI1 > RSSI3 and RSSI2 > RSSI4. The absolute values of their differ-
ence are |RSSI1 −RSSI3| > ∆RSSI1,3 and |RSSI2 −RSSI4| > ∆RSSI2,4.
Therefore, the position of Q1 is outside of the fallibility boundaries of L1,3

and L2,4. Meanwhile, we can show that |RSSI1| < Threshold, |RSSI2| <
Threshold, |RSSI3| > Threshold, and |RSSI4| > Threshold. Then, the
target node Q1 should be within the fuzzy boundary of P1 and P2, and out-
side of the fuzzy boundary of P3 and P4. Therefore, the position of Q1 should
belong to the correcting subarea 1 shown in the shadow area. Similarly, the
position of target node Q2 is within the fuzzy boundary of P2, P3, and P4, and
outside of the fuzzy boundary of P1. Meanwhile, Q2 lies within the fallibility
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boundary of L1,3 and outside of the fallibility boundary of L2,4. Therefore,
the location of Q2 can be determined in the correcting subarea 2, as shown
in the figure.

Table 3: The reliable range in different shipboard scenes.

Scenarios Corridor Central hall Dining hall Engine room

Reliable range (m) 15 20 50 25

Threshold (dBm) -54 -51 -49 -52

It can be seen that each subarea only owns one identification RSSI re-
lationship. Therefore, we can generalize it to apply to more anchor scenes.
Here, the reliable range of each node corresponds to the environment, and
it can be determined based on the experiment analysis. We can calculate
the threshold according to the model in Section 2.1. The shipboard reliable
range and threshold are obtained as Table 3.

However, the fuzzy-boundary mechanism may lead to another problem
called the vicious subarea, which affects the independence of the subareas. As
shown in Fig. 8, the five vicious subareas, which are generated by four fuzzy
boundaries, share the same relationship with the RSSI signals and scatter
in different positions of the area. The location of the node Q1 cannot be
determined by the high–low relationship of RSSIs.

As demonstrated, the fuzzy boundaries may isolate one subarea into sev-
eral vicious subareas, and this can be solved by a planned anchor deployment.
This issue also contributes to our motivation to determine the optimal anchor
deployments.

4.2. Anchor Deployment

The different anchor deployment can generate different numbers and
shapes of subareas. With respect to deployment optimization, our goal is
to eliminate the error rate and improve the accuracy of the FAD. We also
seek to optimize its usage by avoiding the vicious division problem.

A. Subarea Amount
The first impact factor of the performance of FAD is the subarea amount

(SA). Owing to the properties of the AD, it is possible to derive tighter
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Target node

Figure 10: Vicious subarea.

upper bounds on the number of subareas. As discussed in Section 2.2, the
number of subareas is equal to the sum of the number of areas created by
the boundaries of anchor nodes. Therefore, we can obtain its upper bound
by calculating the maximum number of boundaries. Assuming that there
are n anchors in a 2D paradigm, the number of generated boundaries can be
denoted as

boundries =
n× (n− 1)

2
(2)

and the number of subareas can be denoted as:

SA =
boundries2 + boundries+ 2

2
(3)

The maximum of SA can be denoted as:

SAmax =
n4 − 2n3 + 3n2 − 2n+ 8

2
(4)

The steps taken to calculate the SA in FAD is as follows:

(1) To calculate the max SA of n anchors in a space, we calculate the max
SA of n − 1 anchors and add the increased subareas generated by the
new boundary.

(2) When n = 2, the SA is two subareas. Therefore, the algorithm used to
calculate the SA can be denoted as
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SA(N) = SA(N − 1) + subArea(n, [n− 1]), n > 2

SA(n) = 2, n = 2

where, subarea(n, [n− 1]) denotes the addition subarea.

B. Subarea Convergence Level
The second impact factor is the subarea convergence level (SCL). The

SCL is an indicator of the subarea convergence, and can be denoted as

SCL =
SA∑
i=1

(
Si
S
×MPCi) (5)

where SA represents the total number of subareas. S represents the area of
the whole space, and Si is the area of the i-th subarea. MPCi represents the
average length between the centroid and vertices of the i-th subarea.
C. Subarea Uniform Level

The third factor is the subarea uniform level (SUL). The SUL is an indi-
cator of the subarea uniform, and can be denoted as

SUL =
SA∑
i=1

(
Si
S
× V PCi) (6)

where V PCi represents the variance of the length between the centroid
and vertices of the i-th subarea.

The anchor-deployment scheme in FAD will satisfy: Maximize SUL, Sub-
ject to SA = SAmax, and Minimize SCL. Note that in practice, deployment
schemes can be evaluated by these three factors, and we can choose the better
anchor placement in a particular area.

4.3. Localization Strategy

Below, the pseudocode of the proposed localization algorithm is pre-
sented.

The steps for the localization of target nodes using the fault-tolerant
mechanism are given as follows:
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Algorithm 1 Localization strategy

Require: The real coordinate of anchor nodes (Xi, Yi), the number of anchor
nodes n, the received signal strength of unknown nodes RSSI(n), the
RSSI constant of area misjudged ∆R and the effective precision range
Threshold

Ensure: The unknown node estimate coordinate (x, y)
1: //For each anchor nodes
2: for i = 1 : n do
3: make RSSI(n) into orderly vector
4: end for
5: select the 4th max members of RSSI(n) // Improve the efficiency of

positioning
6: if RSSI(n) < Threshold then
7: // satisfy the line area Division model
8: if |RSSI(m)−RSSI(n)| < ∆R then
9: perform the area division

10: else
11: perform the fallibility boundary mechanism
12: end if
13: else
14: perform the fuzzy boundary mechanism
15: calculate the effective location area centroid
16: output the unknown node estimate coordinate (x, y)
17: end if

(1) Draw the boundaries according to the positions of the anchor nodes and
draw the fallibility/fuzzy boundaries based on the fault-tolerant mecha-
nism. Determine all subareas and correcting subareas in the localization
space.

(2) Measure the RSSI values between the target node and anchor nodes.
Determine the high–low relationship of each RSSI, and compare them
with the ∆RSSI.

(3) Determine the subarea of the target node using the area-division model.
The centroid of the subarea is the estimated location of the target node.
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5. System evaluation by Simulation

In this study, we performed a simulation performance evaluation of FAD.
First, we present two criteria of the localization error, and then, by using
simulations, we illustrate the performance of FAD and the anchor-node de-
ployment strategy. We also present a comparative study with four other
state-of-the-art localization methods.

5.1. Evaluation Criterion

In the localization procedure, each high–low relation of RSSI from anchor
nodes maps to the centroid of the subarea that it represents. Representing all
locations in a subarea by its centroid results in the cost of error in the location
estimate result. Therefore, before the simulation, we present two criterions
for the localization method. One is the mean error of the localization, which
is shown as follows:

MeanError =
1

N
×

N∑
i=1

(
√

(Xi − xi)2 + (Yi − yij)2) (7)

where N represents the number of target nodes. (Xi, Yi) represents the es-
timated position coordinates, and (xi, xi) represents the actual position co-
ordinates. The other is the error variance of the subareas, which is given as
follows:

ErrorV ariance =

√√√√ 1

N
×

N∑
i=1

(Ei −MeanError)2 (8)

where Ei represents the localization error of the i-th target node. The lower
the MeanError and ErrorVariance of the position, the higher will be the
accuracy and reliability of the localization method.

5.2. FAD vs. AD

To illustrate the performance of the fault-tolerant mechanism, we com-
pared the localization accuracy of the FAD and FAD without the fault-
tolerant mechanism (called AD). We simulated 1000 unknown nodes and
assumed that the node probability of the area misjudgment is 0.2, 0.4, 0.6,
and 0.8. Then, we compared the mean localization error of the two algo-
rithms in turn. As can be seen in Fig. 11, when the probability of the node
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misjudgment gradually increases, the mean localization error and the local-
ization variance calculated by AD also increase sharply; the result calculated
by the localization method of FAD is relatively gentle, and the localization
performance is best when R = 5dBm. We can see that the FAD provided
an accuracy exceeding 30% compared to the AD. In ship environments, it is
necessary to construct the localization fault-tolerant mechanism for unstable
signals in ship cabins; otherwise, the accuracy and stability of the localization
method of the AD will significantly decrease.
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Figure 11: Performance of the fault-tolerant mechanism

5.3. FAD vs. four state-of-the-art Algorithm

In this section, we compared the localization result of the FAD method
with WCL, REWL[11], SBL[27], and MGRD[28]. (Of them, SBL is an official
implementation, and others are reproduced in this paper). The mean error
and variance of the localization result are related. We performed multiple
sets of comparative experiments that have the same experimental condition,
hardware platform, and node-distribution density. Experimental results show
that the FAD provides better accuracy and stability than the four other state-
of-the-art algorithms. Fig. 12 shows a comparison of the mean localization
error and standard deviation of the three algorithms. Table 4 shows the nu-
meral position accuracy.
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Figure 12: Performance of three localization methods.

Table 4: Comparison of mean error (cm) in the simulation.

Methods

Anchors
4 5 6 7 8 9

WCL 253.78 239.94 225.26 210.13 192.10 173.80

REWL 238.49 225.73 213.97 199.18 182.47 161.72

SBL 355.62 338.19 302.21 271.54 257.32 210.35

MGRD 350.55 272.28 221.94 193.28 154.37 172.96

FAD 209.18 200.68 189.76 178.14 164.54 153.85
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5.4. Anchor Deployment Comparison

To demonstrate the proposed anchor-deployment strategy, we simulated
100 anchor-deployment schemes within a localization area of 900 m × 900 m.
We used SCLPercent and SULPercent parameters to verify the efficiency
of the node-deployment strategy. As shown in Fig. 13, the probability distri-
bution of the accumulative error is markedly higher when the subarea unifor-
mity coefficient SULPercent > 0.5 than that when SULPercent < 0.5. In
particular, when SULPercent > 0.5 and SCLPercent = 0.8, the accuracy
of FAD is the highest.
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Figure 13: Localization results of different anchor deployments.

6. Real-world Shipboard Experimentation

In this section, the performance of the FAD algorithm implemented in
the real-world shipboard environment was evaluated and compared with four
other state-of-the-art methods. The experiment results are demonstrated.

6.1. Experiment Environment

In this study, the shipboard sensor network nodes were designed using
Texas Instruments (TI) CC2530 chips, which meet the IEEE 802.15.4/ZigBee
protocols and operate in the 2.4-GHz range. The sensor nodes are assigned
to two roles, receiving and anchor nodes. Anchor nodes were fixed in the
ship, and they continuously broadcasted radio messages at a rate of one
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package per min, as shown in Fig.14. Receiving nodes were randomly placed
in the hall. These nodes collect the RSSI information measured from the
anchor nodes, and upload them to the server to estimate the locations. The
experiment scenarios include the multipath-rich scenarios, such as a video
hall and a corridor, as well as the multipath-scarce scenarios such as the
main deck and the sun deck.

(a) Multipath-rich Scenario (b) Multipath-scarce Scenario

Figure 14: Experiment scenarios in the shipboard environment.

6.2. Experiments in Multipath-rich Scenario

The experiments in multipath-rich scenario were conducted in the video
hall (15.9 m × 9.7 m) of the ship “M.S.Yangtze 2.” We designed the ship-
board sensor network nodes using Texas Instruments (TI) CC2530 chips,
which meet the IEEE 802.15.4/ZigBee protocols and operate in the 2.4-GHz
frequency band. A network of N = 4 . . . 9 beacon nodes was deployed in
the hall. Eighty reference locations were identified and marked by numbers
on the floor, as shown in in Fig. 15. Neighboring reference locations are
separated by approximately 1.5 m. The RSSI values at each location were
obtained for approximately 60 samples. For comparison, we also estimated
the localization of the target nodes using the five localization techniques:
FAD, WCL, REWL, SBL, and MGRD. To determine the performance, we
calculated the mean error and variance of these three methods. The numer-
ical localization result is shown in Table 5. Among them, the minimum and
maximum positioning errors of the FAD are 1.30 m and 2.10 m, respectively.
As can be seen, the FAD outperforms the other four methods regardless of
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the number of anchors. This shows that multipath propagation degrades
the accuracy of the RSSI-based localization as well as shadowing in multiple
room environments. Meanwhile, the FAD is sufficiently robust to overcome
the degradation introduced by the multipath effect.

Anchor nodeTarget node

Figure 15: Video hall and locations of anchor nodes.

6.3. Experiments in Multipath-scarce Scenario

We intended to quantify the performance of the FAD in an environment
representing a multipath-scarce scenario. The experiments were conducted
on the main deck of “M.S.Yangtze 2” with an area of 9 m × 9 m, as shown.
The networks of nine anchor nodes that were deployed on the deck can be
viewed in Fig.14(b). A target node is bound to an experimenter, who walked
along the pathway with a mean speed of 1 m/s, and the system measured
the localization errors at different spots using five methods. The average
error distances of each method are calculated in time. Fig. 16 shows the
experiment results obtained as we varied N from four to nine. As can be
seen, as the multipath effect decreased, the localization result shows a higher
position-recognition accuracy than the corridors. When the number of an-
chors exceeded six in the experiments, the localization errors of the five meth-
ods are within 3 m. The accuracy of the FAD method is within 2 m when
there are five anchors. In contrast, four other methods can achieve 2 m only
when there are more than seven anchors. The error distance of the FAD
ranges from 1.53 m to 2.10 m. This shows that even the RSSI values are af-
fected by the course, speed, altitude, and movements of the ship during the
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Table 5: Comparison of the mean error in multipath-rich scenario experiments (cm).

Methods

Anchors
4 5 6 7 8 9

WCL 246.15 220.35 197.99 176.85 159.92 144.74

REWL 224.58 225.72 178.81 158.43 145.07 138.58

SBL 378.35 359.46 342.60 315.18 276.45 272.85

MGRB 320.27 314.24 284.32 262.07 231.51 224.16

FAD 210.48 189.45 168.36 151.08 139.72 130.23

voyage, and that FAD performs better than the four other state-of-the-art
methods in shipboard environments.

Fig. 17 shows the true locations of the target nodes with the estimated
locations calculated by the FAD. The figure also shows the subareas divided
by the boundaries between all pairs of anchor nodes. The circles represent
the actual positions of the target nodes, and the stars represent the esti-
mated positions that are obtained by using the FAD. The lines represent
the boundaries introduced by nine anchor nodes, which are represented by
blocks. Among them, the average positioning error of FAD is 1.44 m.

6.4. Experiment of Environmental Changes

In this part, we investigate how environmental changes affect the FAD
performance. To maximize the effect of environmental change, the corridor
scenario that had the most watertight doors and passengers was chosen to
conduct the evaluation. First, we obtained RSSI data from 20 reference
locations with separation of 0.5 m in the corridor. After that, we changed
the environment by altering all of the room doors, after which the RSSI
data were again obtained. Then, we changed the environment further by
introducing randomly walking persons and collecting data for the third data
set. Table 6 describes these environmental changes in the data sets.

The difference in the RSSI data after the environmental change is demon-
strated in Fig. 18. Among them, the above one shows the RSSI difference
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Figure 16: Mean error and variance of the localization methods in multipath-scarce sce-
nario.
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Table 6: Environment changes data sets.

Data Set Passengers Doors

Set 1 None Close

Set 2 None Open

Set 3 Exist Open

of Set 1 and Set 2. As can be seen, the decreasing trend of the RSSI after
changing the environment behaves in a similar manner or even slightly bet-
ter than the environment with all doors closed. As the propagation distance
increased, the RSSI value decreased constantly. This is because closing doors
introduced several reflection paths and severe multipath effects because the
signals bounced off the doors, thus decreasing the accuracy of the localiza-
tion method. Based on this characteristic, the FAD, which uses the high–low
relationship of RSSI can work even better than the formal environment. Fur-
thermore, we evaluated the performance of the FAD with these data sets. The
average accuracies of each target located in the right subarea of each data
set are shown in Table 7. The results show that at first, the FAD method
can achieve a good subarea-localization accuracy of 92.3%. After changing
the environment by opening all of the doors, the average accuracy achieved
was 96.2%.

However, the impact of the randomly walking passengers in the shipboard
environment is irregular, and it is difficult to find a pattern, making object
localization using RSSI a challenging task. Fig. 18 illustrates the difference
in the RSSI of Set 3. As can be seen, the RSSI measurements at different
distances have different variant trends. For example, the RSSI for a trans-
mission distance of 5 m is higher than that for 6 m, but the RSSI for 8 m
is lower than that for 9 m. In Table 7, we can also see that the average
accuracy degrades drastically after introducing the random walking passen-
gers. This is because the passengers would shelter the signal and significantly
change the RSSI values. In this case, the FAD that utilizes the fault-torrent
mechanism performs better than the SBL.
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Figure 18: RSSI in testing locations in data sets.

Table 7: Subarea localization accuracy degradation caused by environment changes.

Environment changes
Accuracy

FAD SBL

None 96.2% 85.0%

Opening doors 98.2% 87.5%

Random walking passengers 77.5% 53.8%
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7. Related Work

Recently, there has been much work on range-free localization techniques
in WSNs[27] [28] [29] [30]. Among them, two localization methods utilized
the high–low relationship instead of actual RSSI values as the signature for
localization. In [27], an SBL technique was proposed to identify the target
node location by a unique set of anchor-node IDs. The target node determines
its set of area signature sequences by measuring the RSSI and estimating its
location by searching through the location sequence table with the highest
similarity of matched sequence. In [28], Shang et al. proposed an RF-based
localization technique called MRGD, which utilized the Voronoi diagram to
divide the localization region into sub-regions, and the Lagrange multiplier
method to calculate the target node location. These methods achieve low
computation costs in WSNs; however, they have some drawbacks, including
that the SBL will never reach the maximum number of subareas as shown by
their equations in the paper, and they will also suffer the severe asymmetry
problem of the RSSI measurement from anchors when performing in the
shipboard environment. The drawback of MRGD is that only three nearest
anchor nodes are considered to determine the subregion, which will lead to
the coarse-grained location result in the sparse networks of anchor nodes. Our
work deals with this problem effectively by using a fault-tolerant mechanism,
and we achieved a fine-grid result.

However, the above methods ignore the practical scenario, and do not
recognize that the spatial deployment of anchor nodes is important to the
robustness of the localization scheme. Beyond them, there is a recent work
that considers the anchor deployment in WSN-based localization applica-
tions. In [31], a heuristic approach is presented to overcome the subarea
heterogeneous problem by minimizing the area standard deviation, and the
effect was mathematical analyzed. However, it only considered the factor
of the maximum number of partitions, which cannot represent the subarea
standard deviation comprehensively. Although numerous issues need to be
considered to achieve the optimal anchor deployment, three factors should
first be considered: (1) the maximum number of subareas, (2) the conver-
gence level of subareas, and (3) the uniform level of the area division result.
These factors form our motivation to search for the optimal anchor deploy-
ments methods. In summary, this paper focuses on solving the interference
in shipboard environments by applying a fault-torrent mechanism and em-
ploying an optimal anchor-deployment strategy in order to obtain a higher
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localization accuracy.

8. Conclusion and Future Work

In this paper, we proposed a novel range-free localization method called
FAD, which does not require significant computational resources, and which
achieves high accuracy to meet the requirement of shipboard applications.
The proposed method utilizes the high–low relationship of RSSI to estimate
the location of target nodes. We also investigated the shipboard RSSI sig-
nals and proposed a fault-tolerant mechanism that enhances the robustness
of the proposed method. We performed simulations and real-world experi-
ments, and the results show that our FAD can achieve a localization error
distance of 1.89 m when we deployed five anchors, 1.68 m with six anchors,
1.51 m with seven anchors, and 1.30 m with nine anchors, as well as demon-
strate the desirable performance of FAD. With fewer anchor nodes and a
less complicated localization algorithm, the FAD is capable of quickly deter-
mining the location of staff and cargo in cabins in an accurate and reliable
manner.

In future work, we aim to incorporate the location probability into the
fault-tolerant mechanism and use more advanced error models to further im-
prove the accuracy of the FAD. The real-world experiment space is restricted
by the video hall construction, and we did not test the fuzzy-boundary mech-
anism. To evaluate the performance of FAD systematically, we will perform
additional experiments in wide shipboard spaces and with a large-scale WSN
system. Furthermore, we will also investigate ways of achieving localization
in 3D environments as well as locating multiple objects.
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