
DC-HEN: A Deadline-aware and
Congestion-relieved Hierarchical Emergency

Navigation Algorithm for Ship Indoor Environments
1st Xiaoling Zeng

School of Navigation
Wuhan University of Technology

Wuhan, China
xlzeng@whut.edu.cn

2nd Kezhong Liu
School of Navigation

Wuhan University of Technology
Wuhan, China

kzliu@whut.edu.cn

3rd Yuting Ma
School of Navigation

Wuhan University of Technology
Wuhan, China

278827@whut.edu.cn

4th Mozi Chen
School of Navigation

Wuhan University of Technology
Wuhan, China

chenmz@whut.edu.cn

Abstract—Emergency evacuation is critical following a ship
accident, as passengers are required to escape the dynamic
hazards and reach the muster station before the deadline. In
the existing efforts, users are guided to a safe path away from
the danger, but unconstrained detours may mislead users to
miss the ship capsizing deadline. Another major drawback is
the heavy congestion during crowd evacuation. Therefore, this
paper proposes DC-HEN, a hierarchical emergency navigation
algorithm with both deadline and congestion awareness for ship
indoor environments. Taking advantage of reinforcement learning
techniques, DC-HEN can provide an individually customized
evacuation route for each user in a real-time manner. We validate
the proposed approach in a large-scale simulation environment
with different population sizes based on a real-ship indoor
scenario. Compared with the state-of-the-art solutions (CANS,
ECSSN), experimental results show that DC-HEN can trade off
between path efficiency and congestion to guide users to the exit
safely.

Index Terms—hierarchical emergency navigation, deadline-
awareness, congestion-awareness, ship indoor environment

I. INTRODUCTION

Safely guided evacuation is the first priority after a pas-
senger ship accident, especially in recent tragic cruise ship
disasters in recent years, highlighting the importance of emer-
gency navigation strategy [1], [2]. In the absence of real-
time emergency information, passengers only rely on a single
floor map to find a way to the exit. Such unreliable solutions
cannot ensure that pedestrians can avoid dynamic hazards
and complete evacuation before the deadline [3]. Therefore,
based on the ship’s indoor environment, an efficient emergency
navigation system capable of guiding pedestrians away from
hazards in real-time is necessary.

This work was supported by the National Natural Science Foundation of
China (NSFC) under Grant No. 51979216, and the Natural Science Foundation
of Hubei Province, China, under Grants No.2021CFA001 and 20221J0059.

Rapidly advancing Internet of Things (IoT) provides new
solutions for emergency navigation, with the objective of
connecting everyone and everything within the system through
the Internet [4]. In particular, Low-Power Wide-Area Networks
(LPWAN) technologies provide better solutions to the chal-
lenge of power consumption, coverage, reliability and con-
nectivity. Recently, the application of LPWAN involves envi-
ronmental surveillance, domestic appliances, alerting systems,
industrial control, etc [5]. Each specific LPWAN technology
(e.g., LoRa, NB-IoT, sigfox, etc.) possess different capabili-
ties, providing options for different application scenarios and
requirements [6], [7], [8].

In emergency navigation, a diversity of solutions has been
proposed. However, there are many inherent constraints pre-
venting its direct deployment and application in ship evac-
uation. Firstly, part of the work relies on the navigation
backbone, which comprises the key nodes deployed in the
environment [9], [10]. Even if these approaches are able to
guide users away from hazards, considering the practical situ-
ation where different users near the same navigation node are
guided by the same path, which can lead to heavy congestion,
increase the user’s exposure time to hazards and decrease
the evacuation success rate, as shown in Fig. 1a. Therefore,
emergency navigation methods for congestion avoidance are
proposed, which do not rely on the navigation backbone but
on the entire navigation network [11], [12], [13], [14], [15],
Unfortunately, as the above approaches rely on numerous
sensor nodes, there is an issue with algorithm efficiency due to
the frequent reconstruction of the entire network in a highly
dynamic navigation environment. In addition, considering a
ship environment with limited evacuation time, the existing
solutions with unconstrained detours may increase the danger
to users, as shown in Fig. 1b.

Hazardous node
User node

Normal node
Road backbone node

Exit

EXIT

(a)

EXIT

Hazardous node
User node
Normal node

Exit

Deadline!

(b)

(c)

Fig. 1. Illustrative examples of the emergency navigation problem. (a) A
navigation scenario based on a road backbone, where users are guided to a
navigation route equidistant from the hazard area. (b) A navigation scenario
based on a compound map, where users are guided to different navigation
paths away from the hazard area. (c) Simulation of crowd evacuation under
ship inclination.

Motivated by the above-mentioned problems, we aim to:
(1) assist users to evacuate before the deadline, (2) adapt
navigation instructions according to the hazards and crowds
in the environment, and (3) ensure real-time performance. In
order to propose an effective emergency navigation algorithm
for the ship’s indoor environment, we first built a model
in the visualization simulation platform Anylogic [16] and
simulated the crowd evacuation process based on the existing
evacuation plan as shown in Fig. 1c. It is intuitively observable
that unexpected congestion exists in some areas, which may
lead to uneven distribution and even accelerate the process
of ship capsizing. Based on these issues, we propose DC-
HEN, a Deadline-aware and Congestion-relieved Hierarchical
Emergency Navigation strategy for a ship indoor environment,
which means that the navigation decisions are driven by both
global planning as well as local environmental information.
Firstly, DC-HEN extracts the spatial features of the ship
layout and constructs a look-up table, which simplifies the
global planning process with the awareness of the evacuation
deadline. Then the RL-based local navigator follows the global
guidance while dynamically adjusting to the hazards and
congestion around the user.

Experiments are carried out in a simulated scenario, the
training results demonstrate that DC-HEN achieves a faster
convergence and the navigation success rate rises to a higher
level more quickly than the classical RL method DDQN [17].
We also evaluate the navigation routes generated by DC-
HEN by comparing it with state-of-the-art congestion-adaptive

emergency navigation methods, CANS and ECSSN. DC-HEN
can adaptively avoid congestion while ensuring no excessive
path stretch.

The contributions of our work are summarized as follows:
• We constructed a crowd movement data set of ship indoor

evacuation via a simulation platform Anylogic for the
DC-HEN training.

• We proposed a method for constructing a graph model
with environmental structural features. It can reduce the
redundancy of navigation nodes, and facilitate the route
query in the global planning process. Furthermore, it
helps to quickly provide global guidance that can guaran-
tee users reach the muster station before the ship capsizes.

• We developed a hierarchical emergency navigation algo-
rithm that combines the global reference path and local
environmental information based on reinforcement learn-
ing technology. And the corresponding reward structure
can motivate the agent to follow the global guidance
while avoiding dynamic hazards and congestion.

The rest of the paper is followed as: the related work of
path planning approaches and emergency navigation methods
is showed in Section II; the problem formulation is detailed
in section III; the proposed algorithm design is discussed in
Section IV, and it is validated by a real case study in Section
V; finally, conclusions are summarized in Section VI.

II. RELATED WORK

In this section, we briefly review the relevant work of path
planning approaches and emergency navigation methods.

A. Traditional path planning

In robot navigation tasks, path planning is a fundamental
phase before actually controlling a mobile robot. Methods can
be divided into two categories according to the scale of the
planning task: global and local path planning. When the prior
information about the environment is complete, global path
planning can deal well with a static environment and plan an
optimal path based on obstacle information. For instance, the
Dijkstra algorithm and A* algorithm are classical algorithms
used for solving the shortest path problem [18], [19]. When
applied in mobile robotics, improvements based on the A*
algorithm have been proposed to deal with the dynamics in
the environment, such as the D* algorithm [20]. However,
when the environment is highly dynamic, the global planner
needs to collect environmental information and then call the
algorithm to re-plan the optimal path, which cannot guarantee
real-time navigation. In contrast, the local one is more useful
for dealing with the unknown or dynamic environment, such
as the Artificial Potential Field (APF) [21].

To reduce overall search time and avoid local minimum,
many researchers combine global and local planners for nav-
igation [22], [23]. Wang et al. proposed a globally guided re-
inforcement learning approach based on the A* algorithm and
the results showed its superiority among distributed methods
[24]. To accelerate the convergence speed and obtain a smooth
path, Dai et al. took the advantage of A* algorithm and Ant

Colony algorithm and achieved efficient searching capabilities
[25]. In the crowd evacuation application, Li et al. divided the
process into two parts, the optimal evacuation path is obtained
at the top layer and the RVO algorithm is used for collision
avoidance at the bottom layer [26]. To obtain an optimal path
for each pedestrian, our work is inspired by previous work
about hierarchical path planning.

B. Reinforcement learning based path planning

In recent years, reinforcement learning methods have been
extensively studied in the fields of games, robots, and emer-
gency evacuation and achieved some success [27], [28]. The
main process of the reinforcement learning algorithm is that
an agent in the initial state interacts with the environment by
selecting an action from the action space in the current state,
then transfers to the next state, and obtains the corresponding
reward. Constantly repeat the exploration process and learn
the optimal strategy with the highest cumulative reward [29].

In the study of path planning, the RL agent learns the
optimal path without collision by exploring the surround-
ing environment information [30]. And RL-based methods
demonstrate outstanding performance in a highly dynamic
environment. However, these methods are not applicable to
large-scale navigation environments due to the lack of reward
information in the learning process, the learning efficiency of
the algorithm is low and it is difficult to learn the optimal
strategy [28], [31].

To improve evacuation efficiency, Sharma et al. abstracted
the evacuation environment into a graph, taking into account
fire spread as well as bottlenecks, and employed reinforcement
learning to find the shortest path [32]. Xue et al. took the scene
image as input, and the output after reinforcement learning
directly controls the dynamic guidance signs arranged in the
environment to help guide the crowd. One drawback of these
methods is that they can lead to heavy congestion as the
crowds are navigated to the same target [33].

C. Emergency navigation

Many researchers have taken path planning techniques from
mobile robotics and adapted these for emergency navigation.
And the decision support system can be divided into central-
ized and distributed methods. Based on the collected infor-
mation about the entire environment, a centralized approach
calculates the shortest path for each robot under dense infor-
mation. In contrast, distributed solutions are mainly proposed
in navigation tasks due to their scalability and efficiency.
Li et al. proposed a distributed algorithm based on artificial
potential field with a the self-organizing sensors network that
is able to represent environmental information [34]. During
navigation, the repulsive potential of the hazards and the
attractive potential of the exit work together to guide the user
along the route with the decreasing potential value. the major
drawback of this is its high message overhead.

In order to reduce communication expense, Wang et al.
designed a road map system in the sensors network that can
adapt to the changes of emergencies [10]. In this way, many

users may be directed to the identical safe path, which can
cause congestion and prolong the evacuation time.

To alleviate the congestion on the navigation route, Wang et
al. proposed a WSN-assisted emergency navigation algorithm,
users near the emergencies are allocated to different paths at
the cost of a slight detour [11]. Benefiting from IoT-enabled
WSNs, Jindal et al. built a composite map that takes into
account the distance to the exit and the hazard level and
proposed a clogging-free navigation strategy for users [14].
Li et al. proposed to predict the environment dynamics based
on the information of WSNs and then construct a potential
field for each node based on the user’s location as well as the
corresponding edanger values [15].

However, these related works cannot be directly applied
to our ship indoor environment since they ignore the hard-
deadline constraint. Detours may prevent users from reaching
the exit before deadline, and periodic recalculation of network
parameters fail real-time planning.

III. PROBLEM FORMULATION

In this section, we first present our overall basic idea,
introduce the navigation model as well as the definitions used
in this article, and then formulate the hierarchical emergency
navigation problem.

A. Basic idea

With the challenges described in Section I, the basic idea
of our intended emergency navigation system is as follows: a
hierarchical combination of global guidance and local emer-
gency navigation.

We consider the complex indoor environment of a ship,
where there are many walls resulting in limited traversable
area. On this basis, for the time sensitivity of ship evacuation,
passengers are required to reach the exit before the deadline.
And we calculate the typical delay and the worst-case delay
on each global segment and constrain the duration time for
the user to experience. In this way, it is easy to select a
particular global navigation node as the subgoal to help guide
emergency navigation. Secondly, for a crowded and highly
dynamic environment, the navigation instructions by the local
planner need to enable the user to avoid potential congestion
and dynamic emergencies. In addition, the efficiency of the
algorithm is of importance, the system is called to provide real-
time guidance for the user based on the sensors information
until the muster station is reached.

B. Model and Definitions

Navigation model: We present the navigation environment
as a 2-dimensional space with the size of H ∗W . And the
navigation network is modeled as an undirected graph G =
(V,E), where V = {vi} is the set of navigation nodes, and
E = {eij = (vi, vj)} represents the set of the traversable path
between two neighboring nodes. We denote the nearest node
from the user’s initial position as the start vs and let the exit
ve locates at the node closest to the muster station. At each
time step, each node determines its status based on the sensor

information and pedestrians’ locations explored by LPWAN.
Based on the navigation model, users can only be guided to
obstacle-free spaces and avoid encounters with hazards and
congestion on the road. And the navigation path refers to a
sequential set of all the navigation nodes from the initial node
to the exit, denoted as pse = {vs, . . . , vi, vj , . . . , ve}.

Assumptions: We assume that the spatial structure of the
navigation environment is fixed and acquired in advance.
The wireless sensors deployed in the scene can monitor the
information of their detection range in real-time, and the entire
evacuation scene can be covered under the guarantee of LP-
WAN. Then the corresponding navigation nodes in hazardous
areas can switch the status in time. When danger threatening
the lives of passengers occurs, an adaptive navigation strat-
egy should guide users away from danger while avoiding
congestion on the road. During the evacuation process, we
assume that the smartphone carried by the user can access the
status information of the surrounding navigation nodes as well
as the global guidance information. Other users’ navigation
information is unavailable, and only their current location can
be obtained.

Objectives: The purpose of emergency navigation is to guide
users away from hazards and reach the exit before the deadline
while reducing unnecessary congestion in the process. There
are four aspects of objectives expected for this hierarchical
navigation algorithm: Path safety and efficiency, Congestion
avoidance, and Algorithm efficiency.

• Path safety: The navigation path is required to ensure that
the user can reach the exit before the deadline and keep
away from hazardous areas in the process.

• Path efficiency: Users are expected to complete evacua-
tion with the shortest path length.

• Congestion avoidance: Congestion should be avoided
while following the optimal navigation path.

• Algorithm efficiency: The execution time of the algorithm
should be reduced to guarantee real-time navigation.

Our proposed hierarchical emergency navigation algorithm
takes into account the above features. In the global navigation
phase, a rapid routing algorithm with guaranteed evacuation
time is adopted to select the subgoals in the process, and based
on the reinforcement learning algorithm, an adaptive naviga-
tion strategy is proposed according to the actual situation in
the local planning phase.

IV. SYSTEM DESGIN

In this section, we first give the outline of our algorithms,
introduce the overall system design, and then detail each step.

A. System overview

As shown in Fig. 2, the implementation of the proposed
algorithm mainly involves the following modules:

• Feature graph construction: To provide a basis for the
global planner and facilitate it in determining navigation
nodes. Based on the real navigation scenario, the set of
feature nodes with structural information is extracted.
Then, the rapid routing with guaranteed delay bounds

Offline

Feature node extraction

Roadmap generation

Look-up table construction

Online

Global navigator

Exit positionStart position

Subgoal selection

RL-based planner

Navigation command

Next node selection

U
pdate

Navigation model

Navigation segment

GVD feature node

Sensor data

Module 1: Feature graph construction

Module 2: Constrained global guidance

Module 3: Adaptive local navigation

Simulation model

Fig. 2. Overview of hierarchical navigation system.

TABLE I
NOTATIONS AND DEFINITIONS

Notation Definition

Cs the set of cells where static obstacles locate
Cf the set of cells denote obstacle-free space
G(V,E) an undirected graph of navigaiton network
V the set of navigation nodes
E the set of segments between adjacent nodes
vs the node corresponding to user location
ve the node corresponding to exit location
Vd the set of nodes occupied by other users
Vh the set of nodes where emergency occurs
G′(V ′, E′) a directed graph with structural features
V ′ the set of feature nodes
E′ the set of segments between adjacent feature nodes
dT (

−−→
v′iv

′
j) the typical delay for corresponding segment

−−→
v′iv

′
j

dW (
−−→
v′iv

′
j) the worst-case delay for corresponding segment

−−→
v′iv

′
j

D the evacuation deadline

algorithm is applied to construct the look-up table so
that each feature node possesses two types of delay
parameters to the exit.

• Constrained global guidance: To ensure that users reach
the destination before deadline and to accelerate the de-
cision process of local emergency navigation. The delay
values of the nodes queried in the look-up table must be
within the remaining evacuation time.

• Adaptive local navigation: To relieve congestion during
the evacuation process and keep users away from haz-
ards. The reinforcement learning method is applied for
decision-making in the highly dynamic environment.

With notations and definitions presented in Table 1, we
will introduce the offline feature graph construction, online
emergency navigation, and how we implement the hierarchical
emergency navigation system in probable situations.

B. Offline feature graph construction

In this part, we aim to construct a global feature graph,
which facilitates the selection of subgoals in the online phase.
To begin with, we detail the extraction of the feature nodes and

give the definition of the roadmap. On this basis, the look-up
table is established on each global feature node to guarantee
the evacuation deadline.

1) Feature node extraction: First, we utilize the Gener-
alized Voronoi Diagram (GVD) construction algorithm to
extract a set of nodes on the free space which have the
same Euclidean distance to the closet obstacles, as shown
in Fig. 3a. Let Cg =

{
g1, . . . , gNg

}
be the set of GVD

nodes and constitute the traversable path of global navigation
which ensures equidistance to the obstacles and accelerates the
process of path searching. Therefore, each GVD node satisfies:

snearest = arg min
si∈Cs

∥g − si∥

num (snearest) ≥ 2

g ∈ Cf

(1)

where Cs = {s1, . . . , sNs
} is the set of nodes corresponding

to the static obstacles, and the distance between gi and its
nearest static nodes snearest is defined as the radius of gi.

Second, based on the GVD, we further filter the nodes
for simplifying path query while reflecting the connections
between navigation paths and ensuring the completeness of
the navigation network. We denote each GVD node by gi =
(xi, yi, ri), where (xi, yi) represents the position of node and
ri represents the shortest distance to the nearest obstacle. We
first sort the elements in the set Cg according to ri and find
the node gmi with the largest rmi .Then we add gmi to the
set Vpre and delete the nodes inside the area with gmi

as
the center and rmi

as the radius to reduce the redundancy
of navigation nodes. The preliminary filtered GVD nodes are
shown in Fig. 3b. In the set Vpre, we further extract the
nodes with structural information according to the pseudo-
code of the feature node extraction in Algorithm 1. Similarly,
it starts from the node with the largest radius, identifies its
neighboring nodes, and determines the connectivity of its
secondary neighbors. After obtaining the set V ′ shown in Fig.
3c, we check the connectivity among these nodes and denote
it as a segment e′ij and the set of segments between navigation
node v′i and its neighboring nodes as e′i. In this way, we can
build a global navigation roadmap which is denoted by a graph
model G′ = (V ′, E′).

2) Look-up table construction and its implementation:
After generating the navigation roadmap, each node knows the
connection to its neighbors and the distance between them.
To ensure that users can successfully reach the exit before
the evacuation deadline, we set two delay parameters on each
navigation segment: typical delay dT (

−−→
v′iv

′
j) and worst-case de-

lay dW (
−−→
v′iv

′
j), which represent the delay usually encountered

based on pedestrian speed and the upper bound for traversing
the segment, respectively. Then, based on a rapid routing with
guaranteed delay bounds [35], we further construct the look-up
table for navigation node query.

At each node v′, we establish a 3-tuple table denoted as
Tab [v′] = (d′v, π

′
v, δ

′
v) to look up the outgoing segment from

it. As shown in the Fig. 4, each tuple in the look-up table
Tab [v′i] reflects the outgoing segment of the path from the

Algorithm 1: Feature Node Extraction Algorithm
Input: Navigation scenario, S; The set of extracted

GVD nodes, Vpre = (x, y, r);
Output: The set of filtered GVD nodes, V ′;

1 Initialize V ′ = Vpre;
2 for each gj ∈ Vpre do
3 mj = argmax(rj), ∀rj ∈ Vpre;
4 set g′mj

← neighboring nodes of gmj
;

5 for each g′mj
(i) ∈ g′mj

do
6 calculate two tangent points t1, t2 of gmj to the

circle with center g′mj
(i), radius r′mj

(i);
7 free1 = freeCheck(gmj

, t1);
8 free2 = freeCheck(gmj

, t2);
9 if free1 = TRUE and free2 = TRUE then

10 set g′′mj
← neighboring nodes of g′mj

;
11 count = 0;
12 for each g′′mj

(j) ∈ g′′mj
do

13 freej = freeCheck(gmj
, g′′mj

(j));
14 if freej =FALSE then
15 Break
16 end
17 count++;
18 end
19 if count = |g′′mj

| then
20 remove g′mj

(i) from V ′;
21 end
22 end
23 end
24 end
25 return V ′

current node to the exit, and its corresponding typical delay
and worst-case delay bound. Specifically, the path from node
v′ to the exit ve has the minimum typical delay of δ′v and the
guaranteed worst-case delay d′v as the upper bound, where π′

v

is selected as the next-hop node.
On this basis of look-up table, we utilize an adaptive routing

strategy to generate the global guidance, ensuring that users
can reach the destination from their initial position within
the deadline, while typical delays are minimal. Considering
the evacuation deadline D, we use the example in Fig. 4 to
illustrate the implementation of the look-up table in the global
phase. The initial position of the user corresponds to the global
navigation node v′u. According to the 3-tuple look-up table of
v′u, the alternative next-hop navigation nodes include v′1 and
v′e. Being aware of the evacuation deadline, we first compare
it with the guaranteed worst-case delays of 25 and 30 for v′1
and v′e, respectively. Let us take into account the following
case:

• If D ≥ 30: The user is firstly guided to v′1. Then
considering the actual delay for traversing

−−→
v′uv

′
1, if

D − d−−→
v′
uv

′
1

≥ 25, then the user will be navigated to v′2 and
ve sequentially. If 15 ≤ D − d−−→

v′
uv

′
1

< 25, the user will be

(a)

(b)

(c)

Fig. 3. Process of feature node extraction. (a) Grid-based GVD of a ship
indoor environment. (b) Preliminary GVD nodes. (c) Extracted structure-aware
feature nodes.

Fig. 4. A simple example of look-up table to the exit ve.

navigated to ve directly.
• If 25 ≤ D < 30: Then the user will be navigated to ve

directly.
• If D < 25: The user will not be able to safely complete

the evacuation.

C. Online emergency navigation

In this part, we will introduce the adaptive emergency
navigator based on the DC-HEN algorithm. We start by defin-
ing the essential components of the reinforcement learning
method, and then detail the training process with the neural
network structure.

1) RL-based emergency navigation: In order to indepen-
dently generate safe navigation instructions for each user while
considering congestion, we propose to train the reinforcement
learning agent in an emergency evacuation environment as-
sisted by LPWAN to find the optimal navigation solution.

Local observation: Based on the previously mentioned
undirected graph G = (V,E), we simulate the evacuation
environment as a grid map and each grid cell reflects the
environmental information. In particular, the environment state
is replaced by the local observation with a limited range
Ho ∗Wo. Taking the agent as the center, the surrounding
environmental information and global guidance are collected
at each time step t. We denote the local observation of agent at

time t as Ot =
{
oft , o

w
t , o

d
t , o

h
t , o

g
t

}
, which collects the set of

locations of free space, walls, other users, hazards, and global
guidance segments within the observation range respectively.

Action space: In this reinforcement learning task, an agent
takes an action on the behalf of the user at each time step and
move from current node to a neighboring navigation node.
Therefore we restrict the action space as a discrete set, which
is defined as: A = {a1, a2, . . . , a9}.

Reward function: In our proposed navigation system, to
ensure that the user reaches the exit safely and efficiently, the
RL agent in the local path planner needs to meet the following
requirements simultaneously: 1) avoiding collide with walls
and congestion with other users; 2) following the global
optimal guidance as possible; 3) keeping away from hazardous
areas. Then we design a novel reward function as follows: 1) a
small negative reward at each time step to encourage the agent
to reach the exit with less time compensation; 2) a penalty of
when the agent collides with walls or other users; 3) a great
penalty for exposure to hazards; 4) a positive reward denoted
as r4 = Nt × 10 for following the global guidance. We first
compute the parameter Nt once the agent returns to the global
navigation path at time t, which is obtained by subtracting the
sequence number of the currently occupied global navigation
cell from the total length of the remaining global reference
path. Then we remove the current cell and the cells after it
on the global navigation sequence; 5) a great positive reward
when the agent reaches the exit.

Double DQN: Q-learning bases its solution on temporal
difference and stores the updated Q-values in a table after
each step until convergence. However, Q-learning cannot cope
with complex environments with high dimensional state-action
spaces. Thus, Deep Q network (DQN) [36] is proposed,
which combines the exploration mechanism of reinforcement
learning with the deep neural networks. In particular, the
experiences explored by the agent are stored in the replay
memory and a Q-network is then used to approximate the Q-
value function, where the network takes the state as the input
and outputs the Q-value of each state-action pair. To update
the parameters of the network, a minibatch of transitions
(st, at, rt, st+1) is randomly sampled and at iteration i the
loss function is as follows:

Li(θi) = E[(rt + γmax
at+1

Q(st+1, at+1; θ
−
i)−Q(st, at; θi))

2]

(2)
where rt can be calculated according to the reward function,
γ is the discount factor.

Based on DQN, Double DQN (DDQN) [17] is proposed
to solve the problem of overestimation by decoupling action
selection and evaluation using two networks. Firstly, two
network models with the same structure are constructed. An
action with maximum Q-value is selected by current Q-
network, while the target Q-network calculates its value, and
the network parameters are denoted as θ and θ′ respectively.

LSTM

Convolution Layer LSTM Layer FC Layer

LSTM

LSTM

LSTM

units

Action space

Local observation

User
Other pedestrians

Global guidance

Historical observations

Real-time instruction

Hazardous area
Exit

units

kernels Reshape

stride

kernels

stride

Fig. 5. The neural network structure of DC-HEN.

And the target Q-value is denoted as:

Y DoubleDQN
t = rt + γQ(st+1, argmax

at

Q(st+1, at; θ); θ
′)

(3)
In this paper, we use the DDQN algorithm and adapt it to

the proposed emergency navigation objectives. During each
training episode, the agent continues to explore and takes the
action from the action space, and the observations update at
each time step. We center the observation image on the user’s
current location, with a range of Ho ×Wo. And the black, red,
and gray cells in each frame indicate the location of walls,
hazards, and other pedestrians, respectively. In particular, we
provide global guidance for the agent, as represented by the
segments composed of blue cells. Then the sequential frames
of observations are stacked to compose the input of the
network as shown in Fig. 5. Based on the DDQN algorithm,
multiple layers of 3D CNN are used in this network to extract
image features, which are subsequently connected to an LSTM
layer for temporal information. And finally, a fully connected
layer outputs the Q-value corresponding to each state-action
pair. The exploration will continue until the completion of
K episodes. For training the target Q-network, we store the
tuple < st, at, rt, st+1 > into the replay memory set with the
size Nr, then extract Nb memories for updating the current
Q-network, and the loss function can be written as:

L(θ) =
1

Nb

Nb∑
i=1

[Y i
t −Q(sit, a

i
t; θ)]

2 (4)

To update the parameters θ′, θ is moved to the target Q-
network every U time steps. In the real-time navigation pro-
cess, users can be directed to the optimal next-hop navigation
node based on the output value of the target Q-network, as
described in the pseudo-code of Algorithm 2.

D. Hierarchical emergency navigation strategy

In this part, we will detail the process of the proposed
hierarchical navigation strategy which directs users to follow
the global reference path safely while avoiding congestion.

Based on the graph model G = (V,E), where each node can
embody the real-time environmental information, we design an
emergency navigation system with a hierarchical mechanism.
In the global phase, the obtained sequence of feature nodes
guarantees that the user reaches the exit safely before deadline.
Then based on the DC-HEN algorithm, the trained target
network model outputs the action with the highest value
based on the real-time observations, which is then used to
send navigation instructions through the device carried by the
user. Thus when the user reaches the exit, we can obtain a

Algorithm 2: Locally RL-based Emergency Naviga-
tion Algorithm

Input: User node, vu; Subgoal v′; Target Q network
model;

Output: Real-time evacuation instruction, vi; Traversal
time, dt;

1 Load the trained target Q network model;
2 Get the sequence of global reference nodes:

pvuv′ ← {vu, . . . , v′};
3 Remove hazardous nodes from pvuv′ :

pvuv′ ← pvuv′ − pvuv′ ∩ Vh;
4 Input the stacked observations:

st ← {Ot, Ot−1, . . . , Ot−Nt−1};
5 dt = 1;
6 while True do
7 at ← argmaxQ(st+1, at; θ

′);
8 vi ← the navigation node corresponding to the

execution of action at;
9 dt = dt +1;

10 if vi ∈ pvuv′ then
11 remove set {vu, . . . , vi} from pvuv′ ;
12 end
13 Update vu;
14 if pvuv′ is empty then
15 Break
16 end
17 end
18 return dt, vi;

congestion-relieved safe path consisting of the experienced
nodes, denoted as pse =

{
vs, . . . , vi, v

′
j , . . . , ve

}
.

Depending on the node where user’s initial position is lo-
cated, we consider the following three situations, respectively.

• Situation 1: The initial user node is a global feature node.
In this situation, the algorithm queries the look-up table of
the current node directly and Algorithm 2 is then executed
to navigate the user to the next feature node. And the
actual delay to experience each segment is subtracted
from the total evacuation time, which in turn updates the
remaining deadline. And the above operation is looped
until the user reaches the exit node.

• Situation 2: The initial location of the user corresponds
to a normal node in the free space. In this case, we first
determine the global node v′i corresponding to the feature
area occupied by the user, and calculate the shortest path
psi = {vs, . . . , v′i} from the user’s position to this node.
Then we combine the global guidance reaches out from v′i
based on the look-up table with psi as the first segment
of the global reference path. The subsequent execution
will be implemented according to the situation 1.

• Situation 3: The initial user node is surrounded by haz-
ards. In this situation, there is no accessible navigation
path and the user is expected to wait for rescue.

Multi-function hall Cabin area 1 Cabin area 2 Swimming pool

(a)
User's positionGlobal guidance

Exit position Hazardous areaOther users

Feature node

(b)

Fig. 6. A single-deck crowd evacuation simulation model: (a) 3D view of the
simulation process in Anylogic. (b) Training environment based on scenario
(a).

V. EXPERIMENTAL STUDIES AND RESULTS

A. Data set generation

Before the experimental setup, to make the experiment more
realistic, we first simulate the evacuation process on a single
deck using the visualization simulation platform Anylogic
and generate the crowd movement data set. The scenario
is modeled according to the single-deck layout of a real
cruise ship. Then the initial locations of simulation agents are
randomly generated according to the proportion of different
service areas, and the movement logic of agents is constructed
according to the existing evacuation plan. More details of the
crowd evacuation modeling are as follows:

Agent attributes: Following IMO MSC Circ 1238 [37], the
agents in the model are set up according to the age, gender,
and travel speed described in the regulations.

Start locations: The start locations of the agents are mainly
distributed in four parts of the deck, such as Multi-function
hall, Cabin area 1, 2, Swimming pool. The specific locations
of each service area are shown in the Fig. 6a.

End locations: The target locations of crowd evacuation
is the muster station on each deck and there are two muster
stations A and B.

Response time distribution: Referring to the response time
distribution (RTD) defined in [37], the agents RTDs in our
experiment is set based on four distributions as shown in Fig.
7.

B. Experimental setup

To validate the proposed hierarchical navigation strategy,
we set up a ship indoor simulation environment as shown in
Fig. 6b. Then we set the destinations of navigation in the
map according to the locations of the real muster stations.
Considering the unpredictable emergencies, we randomly set
the hazardous area, and we extend its edges to form a pro-
tection zone in order to prevent pedestrians from reaching the
hazards. With the aforementioned crowd movement data set,

Fig. 7. Response time distribution of different service area.

TABLE II
MODEL AND TRAINING PARAMETERS

Parameters Configuration

Observation field Ho = Wo = 15
Episode k = 30000
Replay memory size Nr = 10000
Batch size Nb = 64
Update frequency U = 20

the training environment and the navigator’s decision update
once per second. On this basis, the navigation goal is to guide
the user from the initial position to the muster station. In the
experiments, the default parameters are set based on Table 2.
The open-source code as well as the crowd movement data
set will be released at https://github.com/xlz0011/DC-HEN.
Training was performed on a NVIDIA GTX 2080ti GPU in
Python 3.8 with TensorFlow 2.3.0.

C. Results and performance evaluation

In order to determine the local observation size and the
length of the input historical sequence in the experiment, we
use the generated data set of different populations for training.
As shown in Table 3, with the increase in observation size, the
navigation path stretch decreases. When the observation field
reaches a certain size, such as 15× 15, the path stretch tends
to be stable. Then, in the case of fixed local observations, we
study the impact of input sequence length on the results. As
shown in Table 4, with the increase of the sequence length,
the temporal information becomes richer and the navigation
path stretch decreases. When Nt >= 4, there is no significant
improvement in path stretch performance.

To evaluate the training process of our proposed hierarchical
navigation strategy, we first compare it with the DDQN algo-
rithm in the same environment, which lack global guidance.
Then, simulations are conducted using the trained model
and results are compared with other congestion avoidance
navigation algorithms.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training episode 1e4

1750

1500

1250

1000

750

500

250

0

250

500

Av
er

ag
e

re
wa

rd

DDQN
DC-HEN

Fig. 8. Comparison of training returns of different algorithms.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training episode 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

DC-HEN
DDQN

Fig. 9. Comparison of success rate of different algorithms.

1) Evaluation of the reward returns: We first perform
30000 episodes of training based on the DDQN and DC-
HEN in the OpenAI gym environment, and we score each
algorithm by calculating the average reward over the last 100
episodes. The training results are shown in the Fig. 8, the
red line represents the DC-HEN algorithm and the blue line
represents the average reward of the DDQN algorithm. From
Fig. 8, the average rewards obtained by the proposed algorithm
decreases rapidly in the early stage of training with the novel
reward function. After 1500 episodes, the red curve shows an
increasing trend and the DC-HEN algorithm converges after
10000 episodes of training. In comparison, in the case of
large-scale training environment with sparse reward values,
the training curve of the DDQN algorithm changes slowly,
and the average reward value after convergence is lower than
our proposed method.

2) Evaluation of the simulation results:

• Navigation success ratio: We also count the number of
times when the agent reaches the target every 1000
episodes during the training process. As shown in the Fig.
9, DC-HEN’s navigation success rate rises rapidly with

TABLE III
ABLATION STUDY ON DIFFERENT OBSERVATION SIZES

Ho ×Wo 9× 9 11× 11 13× 13 15× 15 17× 17

Crowd-50 1.12 1.10 1.08 1.08 1.07
Crowd-100 1.25 1.24 1.18 1.12 1.10
Crowd-150 1.44 1.37 1.25 1.15 1.15

TABLE IV
ABLATION STUDY ON DIFFERENT INPUT SEQUENCE LENGTHS

Nt 1 2 3 4 5

Crowd-50 1.28 1.19 1.12 1.08 1.06
Crowd-100 1.43 1.33 1.27 1.12 1.10
Crowd-150 1.47 1.36 1.28 1.15 1.15

Fig. 10. Possible evacuation trajectories by different methods.

50 100 150
Crowd population

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Av
er

ag
e

pa
th

 st
re

tc
h

DC-HEN
ECSSN
CANS

Fig. 11. Average path stretch.

the increase of training times and finally reaches 78.3%.
In contrast, the curve of DDQN algorithm changes slowly
and the navigation success rate after convergence is low.

• Average path stretch: For the same ship indoor envi-
ronment, we implement three approaches with different
crowd data sets, which are set to 50, 100, and 150
respectively. Each set of comparisons contains 100 pairs
of data with a randomly generated user’s initial location,
total traverse time, and navigation trajectory. As shown in
Fig. 10, we show the possible evacuation trajectories for a
selected user generated by three methods in a large-scale
ship indoor environment. Compared to ECSSN, which
follows the shortest path algorithm, the route planned by
DCHEN has a certain distance from the static obstacles,
while the trajectory of ECSSN is close to the wall. And
the path stretch is calculated as the actual navigation path
length divided by the length of the shortest possible path
from the user’s start location to the exit. Fig. 11 shows
the average and the maximum path stretch of DC-HEN,
CANS, and ECSSN with different crowd movement data
sets in a ship indoor environment. It shows that the path
stretch results for DC-HEN are similar to those of ECSSN
in all cases. ECSSN always achieves the lowest path

0 200 400 600 800 1000
Congestion

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

100 200 300 400

0.950

0.975

1.000

1.025

1.050

ECSSN
CANS
DC-HEN

Fig. 12. Congestion distribution.

stretch rate since it follows the path which is determined
by the minimum distance from any location to the exit.
The results demonstrate that the path efficiency of our
method approaches that of the shortest path algorithm.

• Congestion distribution: We further evaluate the per-
formance of congestion distribution of our navigation
algorithm by measuring the number of paths related to
the nodes involved in the navigation environment at the
end of each execution (100 users for 10 times test). As
is shown in Fig. 12, nodes involved in DC-HEN are
at most participate in about 300 navigation paths, and
the curve quickly reaches 1. Compared with CANS and
ECSSN, DC-HEN involves the least navigation paths
and has better congestion mitigation performance in the
navigation process.

VI. CONCLUSIONS

This paper developed a hierarchical emergency navigation
algorithm - DC-HEN, involving both congestion and dead-
line awareness for ship indoor environments. Considering the
structure of the navigation scenario, we extract the feature
node and construct a look-up table based on it. This allows
us to quickly determine the fastest route within the evacuation
deadline. Referring to the global guidance, DC-HEN utilizes
reinforcement learning and designs a novel reward function
to provide congestion-relieved evacuation guidance for each
user in real-time. The proposed DC-HEN outperforms other
state-of-the-art methods in the case study. It showed that
DC-HEN has a higher success rate with 78.3%, relatively
short average path stretch, and better congestion avoidance
performance. Additionally, DC-HEN can be easily deployed
on emergency navigation for ship indoor environments due to

its high training efficiency (i.e., fast convergence) and friendly
assistance. In the future, our algorithm has the potential to be
extended to other complicated situations, such as finite life-
saving resources and muster station with limited capacity.

REFERENCES

[1] J.-U. Schröder-Hinrichs, E. Hollnagel, and M. Baldauf, “From titanic
to costa concordia—a century of lessons not learned,” WMU journal of
maritime affairs, vol. 11, no. 2, pp. 151–167, 2012.

[2] T.-e. Kim, S. Nazir, and K. I. Øvergård, “A stamp-based causal analysis
of the korean sewol ferry accident,” Safety science, vol. 83, pp. 93–101,
2016.

[3] X. Wang, Z. Liu, J. Wang, S. Loughney, Z. Zhao, and L. Cao,
“Passengers’ safety awareness and perception of wayfinding tools in
a ro-ro passenger ship during an emergency evacuation,” Safety science,
vol. 137, p. 105189, 2021.

[4] S. H. Shah and I. Yaqoob, “A survey: Internet of things (iot) tech-
nologies, applications and challenges,” 2016 IEEE Smart Energy Grid
Engineering (SEGE), pp. 381–385, 2016.

[5] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area
networks: An overview,” ieee communications surveys & tutorials,
vol. 19, no. 2, pp. 855–873, 2017.

[6] J. de Carvalho Silva, J. J. Rodrigues, A. M. Alberti, P. Solic, and A. L.
Aquino, “Lorawan—a low power wan protocol for internet of things: A
review and opportunities,” in 2017 2nd International Multidisciplinary
Conference on Computer and Energy Science (SpliTech). IEEE, 2017,
pp. 1–6.

[7] J. Xu, J. Yao, L. Wang, Z. Ming, K. Wu, and L. Chen, “Narrowband
internet of things: Evolutions, technologies, and open issues,” IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 1449–1462, 2017.

[8] J. Purohit, X. Wang, S. Mao, X. Sun, and C. Yang, “Fingerprinting-
based indoor and outdoor localization with lora and deep learning,”
in GLOBECOM 2020-2020 IEEE Global Communications Conference.
IEEE, 2020, pp. 1–6.

[9] M. Barnes, H. Leather, and D. Arvind, “Emergency evacuation using
wireless sensor networks,” in 32nd IEEE Conference on Local Computer
Networks (LCN 2007). IEEE, 2007, pp. 851–857.

[10] M. Li, J. Wang, Z. Yang, and J. Dai, “Sensor network navigation without
locations,” in Proceedings of the 6th ACM conference on Embedded
network sensor systems, 2008, pp. 391–392.

[11] C. Wang, H. Lin, and H. Jiang, “Cans: Towards congestion-adaptive
and small stretch emergency navigation with wireless sensor networks,”
IEEE Transactions on Mobile Computing, vol. 15, no. 5, pp. 1077–1089,
2015.

[12] L.-W. Chen and J.-J. Chung, “Mobility-aware and congestion-relieved
dedicated path planning for group-based emergency guiding based
on internet of things technologies,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 9, pp. 2453–2466, 2017.

[13] Z. Zhang, H. Liu, Z. Jiao, Y. Zhu, and S.-C. Zhu, “Congestion-aware
evacuation routing using augmented reality devices,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 2798–2804.

[14] A. Jindal, V. Agarwal, and P. Chanak, “Emergency evacuation system for
clogging free and shortest-safe path navigation with iot-enabled wsns,”
IEEE Internet of Things Journal, 2021.

[15] Z. Li, X. Liu, and S. Wu, “Dynamic emergency navigation based on
prediction via wireless sensor networks,” 2020 The 8th International
Conference on Information Technology: IoT and Smart City, 2020.

[16] A. Borshchev, S. Brailsford, L. Churilov, and B. Dangerfield, “Multi-
method modelling: Anylogic,” Discrete-event simulation and system
dynamics for management decision making, pp. 248–279, 2014.

[17] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[18] E. W. Dijkstra, “A note on two problems in connexion with graphs,” in
Edsger Wybe Dijkstra: His Life, Work, and Legacy, 2022, pp. 287–290.

[19] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[20] S. M. Persson and I. Sharf, “Sampling-based a* algorithm for robot
path-planning,” The International Journal of Robotics Research, vol. 33,
no. 13, pp. 1683–1708, 2014.

[21] A. Stentz, “Optimal and efficient path planning for partially known
environments,” in Intelligent unmanned ground vehicles. Springer,
1997, pp. 203–220.

[22] B. Rivière, W. Hönig, Y. Yue, and S.-J. Chung, “Glas: Global-to-local
safe autonomy synthesis for multi-robot motion planning with end-to-
end learning,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp.
4249–4256, 2020.

[23] J. Zeng, L. Qin, Y. Hu, Q. Yin, and C. Hu, “Integrating a path
planner and an adaptive motion controller for navigation in dynamic
environments,” Applied Sciences, vol. 9, no. 7, 2019. [Online].
Available: https://www.mdpi.com/2076-3417/9/7/1384

[24] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path
planning on grids,” Journal of Artificial Intelligence Research, vol. 39,
pp. 533–579, 2010.

[25] O. Khatib, “Real-time obstacle avoidance for manipulators and mo-
bile robots,” in Proceedings. 1985 IEEE International Conference on
Robotics and Automation, vol. 2. IEEE, 1985, pp. 500–505.

[26] G. Li, A. Yamashita, H. Asama, and Y. Tamura, “An efficient improved
artificial potential field based regression search method for robot path
planning,” in 2012 IEEE International Conference on Mechatronics and
Automation. IEEE, 2012, pp. 1227–1232.

[27] S. Zhou, X. Liu, Y. Xu, and J. Guo, “A deep q-network (dqn) based
path planning method for mobile robots,” in 2018 IEEE International
Conference on Information and Automation (ICIA). IEEE, 2018, pp.
366–371.

[28] Z. Zhang, D. Lu, J. Li, P. Liu, and G. Zhang, “Crowd evacuation simula-
tion using hierarchical deep reinforcement learning,” in 2021 IEEE 24th
International Conference on Computer Supported Cooperative Work in
Design (CSCWD). IEEE, 2021, pp. 563–568.

[29] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[30] Y. Zhang, Z. Chai, and G. Lykotrafitis, “Deep reinforcement learning
with a particle dynamics environment applied to emergency evacuation
of a room with obstacles,” Physica A: Statistical Mechanics and its
Applications, vol. 571, p. 125845, 2021.

[31] C. Wang, J. Wang, Y. Shen, and X. Zhang, “Autonomous navigation
of uavs in large-scale complex environments: A deep reinforcement
learning approach,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 3, pp. 2124–2136, 2019.

[32] J. Sharma, P.-A. Andersen, O.-C. Granmo, and M. Goodwin, “Deep
q-learning with q-matrix transfer learning for novel fire evacuation
environment,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 51, no. 12, pp. 7363–7381, 2020.

[33] X. Yiran, W. Rui, and L. Jiafeng, “Crowd evacuation guidance based
on combined action-space deep reinforcement learning,” Harbin Gongye
Daxue Xuebao/Journal of Harbin Institute of Technology, vol. 53, no. 8,
2021.

[34] Q. Li, M. De Rosa, and D. Rus, “Distributed algorithms for guiding
navigation across a sensor network,” in Proceedings of the 9th annual
international conference on Mobile computing and networking, 2003,
pp. 313–325.

[35] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2018, pp. 13–22.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[37] “Guidelines for evacuation analysis for new and existing passenger
ships.” IMO MSC/Circ 1238, 2007.

