DC-HEN: A Deadline-aware and Congestion-relieved Hierarchical Emergency Navigation Algorithm for Ship Indoor Environments

Xiaoling Zeng, Kezhong Liu, Yuting Ma, Mozi Chen

Wuhan University of Technology, Wuhan, China May 2023, MOST

Motivation

Emergency evacuation is critical following a ship accident, as passengers are required to escape the dynamic hazards and reach the muster station before the deadline.

Motivation

(a) A navigation scheme based on a road backbone may lead to heavy congestion.

(b) Unconstrained detours may increase the user's exposure time to hazards.

Our Contribution

- We constructed a crowd movement data set of ship indoor evacuation via a simulation platform Anylogic for the DC-HEN training.
- We proposed a method for constructing a graph model with environmental structural features.
- We developed a hierarchical emergency navigation algorithm that combines the global reference path and local environmental information based on reinforcement learning technology.

Our Proposed Hierarchical Navigation System

Offline Feature Graph Construction

[Baruah et al. 2018]

(i) Process of feature node extraction

Input:

- Typical delay: $d_T(\overrightarrow{v'_iv'_j})$
- The worst-case delay: $d_W(\overrightarrow{v'_iv'_j})$
- Deadline

Output: a 3-tuple table $Tab[v'] = (d'_v, \pi'_v, \delta'_v)$

(ii) A simple example of look-up table to the exit

Decision-making Agent Development

[Van Hasselt et al. 2016]

Local observation: the set of locations of free space, walls, other users, hazards, and global guidance segments within the observation range respectively.

Action space: a discrete set of navigation decisions.

Reward function:

- a small negative reward at each time step to encourage the agent to reach the exit with less time compensation;
- a penalty of when the agent collides with walls or other users;
- a great penalty for exposure to hazards;
- a positive reward denoted as $N_t \times 10$ for following the global guidance;
- a great positive reward when the agent reaches the exit.

Hierarchical Emergency Navigation System

[Van Hasselt et al. 2016]

The target Q-value:

$$Y_t^{DoubleDQN} = r_t + \gamma Q \left(s_{t+1}, \operatorname{argmax}_{a_t} Q(s_{t+1}, a_t; \theta); \theta' \right)$$

The loss function:

$$L(\theta) = \frac{1}{N_b} \sum_{i=1}^{N_b} [Y_t^i - Q(s_t^i, a_t^i; \theta)]^2$$

Simulation Setup

Data set generation: we simulate the evacuation process on a single deck using the visualization simulation platform Anylogic to generate the crowd movement data set.

Ablation study:

ABLATION STUDY ON DIFFERENT OBSERVATION SIZES						ABLATION STUDY ON DIFFERENT INPUT SEQUENCE LENGT					
$H_o \times W_o$	9×9	11×11	13×13	15×15	17×17	N_t	1	2	3	4	5
Crowd-50	1.12	1.10	1.08	1.08	1.07	Crowd-50	1.28	1.19	1.12	1.08	1.06
Crowd-100	1.25	1.24	1.18	1.12	1.10	Crowd-100	1.43	1.33	1.27	1.12	1.10
Crowd-150	1.44	1.37	1.25	1.15	1.15	Crowd-150	1.47	1.36	1.28	1.15	1.15

Compared Approaches

[Van Hasselt et al. 2016; Wang et al. 2016; Jindal et al. 2022]

Approach	Description
DC-HEN	Hierarchical emergency navigation, our proposed approach
DDQN	Deep RL-based emergency navigation without global guidance
CANS	A congestion-adaptive method with potential map and hazard level map
ECSSN	Clogging-free and shortest-safe path navigation method

Experimental results

Evaluation of the training process

- DC-HEN's training curve rises faster than the DDQN method.
- DC-HEN's navigation success rate rises rapidly with the increase of training times and finally reaches 78.3%.

Experimental results

Average path stretch

- The path planned by DC-HEN has a certain distance from the static obstacles, while the trajectory of ECSSN is close to the wall.
- The path stretch results for DC-HEN are similar to those of ECSSN in all cases.

Experimental results

Congestion distribution

 Nodes involved in DC-HEN are at most participate in about 300 navigation paths, and the blue curve rapidly reaches 1.

Conclusions

- DC-HEN utilizes reinforcement learning and designs a novel reward function to provide congestion-relieved evacuation guidance for each user in real-time.
- DC-HEN has a higher success rate with 78.3%, relatively short average path stretch, and better congestion avoidance performance.

Future work

- Designing a multi-agent decision system that takes into account the allocation of limited lifesaving resources.
- Incorporating users' personalized preferences.

Thank you!

Xiaoling Zeng xlzeng@whut.edu.cn Kezhong Liu kzliu@whut.edu.cn

Yuting Ma 278827@whut.edu.cn Mozi Chen chenmz@whut.edu.cn