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Spatio-temporal Fingerprint Localization for
Shipboard Wireless Sensor Networks

Mozi Chen, Kezhong Liu, Jie Ma and Cong Liu

Abstract—Location-aware technology has numerous potential
applications in safety, living, and services in the shipboard envi-
ronment. Fingerprint-based methods that use the received signal
strength indication (RSSI) to provide high positioning accuracy
have been widely adopted for indoor localization. However, RSSI
can be severely disturbed by the steel structure and dynamics
of the shipboard environment, which prevents it from being
implemented in shipboard localization in practice. In this paper, a
novel approach, called spatio-temporal fingerprint localization, is
proposed. This approach can alleviate the impact of the dynamic
shipboard environment and enhance the localization robustness.
To adapt to the environmental dynamics, a radio time series
is proposed to filter irrelevant noise from location fingerprints.
An extraction method called radio spatial features is proposed to
identify the highly location related features from redundant RSSI
information by using linear discriminant analysis and principal
component analysis. Extensive experiments on the passenger ship
Yangtze 2 demonstrate the effectiveness of the proposed algorithm
in providing higher accuracy than previous fingerprint-based
methods.

Index Terms—Shipboard Environment, Indoor Localization,
Fingerprint Localization, Wireless Sensor Network.

I. INTRODUCTION

AS location-based services (LBSs) [1] have found in-
creasingly wide and extensive application in different

fields, there has been an increasing demand for indoor LBS
applications in recent years. As one of the most important
means of water transportation, ships such as cruise ships and
ferries are important indoor scenes in which hundreds of
people will stay for a long duration of a voyage. Real data
have shown us how complicated and chaotic the movement of
people on a large ship can be [2]. As these ships have large
sizes and complex structures, LBS plays an important role
for passengers in a wide range of living, safety, and service
applications onboard. An accurate built-in localization system
and pervasive LBS for passengers can enable them to quickly
achieve their goals of all resources in the ship and dramatically
reduce the reaction time in an emergency situation.
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Fig. 1. Architecture of the fingerprinting localization system.

Currently, the Global Positioning System (GPS) [3] is one
of the most effective positioning technologies in outdoor
environments. However, it has weaknesses, such as being
easily shielded by the metal hull and poor signal strength in
the shipboard indoor environment. These drawbacks have led
to the development of indoor localization techniques based
on wireless networks, such as radio frequency identification
(RFID) (e.g., LANDMARC [4]), ultra-wideband, ZigBee, and
Wi-Fi. Among these technologies, the IEEE 802.15.4/ZigBee
standard is assumed to be a good solution for application in
the shipboard environment [5]. A self-healing mesh network,
which is easy and reliable to deploy on a large scale, can
be constructed at low cost [6]. For localization within the
ZigBee-based shipboard wireless sensor network, the posi-
tioning methods include distance-based (time of arrival and
time difference of arrival) [7], [8], [9] and fingerprint-based
methods [10], [11] [12]. For the reason of the received signal
strength indication (RSSI) can be easily obtained from various
hardware devices, RSSI is primarily used in distance-based
technologies to estimate distances, even the RSSI can be
severely affected by non-line-of-sight (NLOS) scenarios [13].
Unlike distance-based methods, fingerprint-based methods
(also referred to as radio mapping), which exploit the existing
infrastructure and establish mapping relationships between
indoor locations and RSSI signatures without transforming the
RSSI values into distance information, have been proposed
and are widely adopted for indoor localization [14]. Fig.1
illustrates the fingerprint-based technique. The construction of
a radio map is the called offline training phase, and matching
is referred to as the online localization phase. Fingerprint-
based methods can achieve higher precision in complex indoor
environments. However, the RSSI mapping relationships can
easily vary as a result of multipath effects in the shipboard
environment, which contribute to most of the estimation errors
in current localization systems.
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In this case, the radio propagation properties and dynamic
environment impacts in the shipboard environment have been
studied. Extensive experiments have been conducted in a real-
world passenger ship to analyze the impacts from both spatial
and temporal perspectives. Spatially, signal propagation suffers
from a severe multipath effect subject to signal reflection,
diffraction, and absorption by steel structures (e.g., water doors
and decks) in a real shipboard environment. A signal can
propagate through different paths and generate different com-
ponents, which are combined to reproduce a distorted version
of the original signal [15]. Temporally, however, shipboard
signal propagation suffers from dynamic changes during the
voyage, including transient interference, such as from moving
passengers, doors opening and closing, and prolonged changes
in terms of the ship speed, temperature, humidity, and weather
conditions [16]. As a result, the multipath effect and environ-
mental changes can severely disturb the RSSI measurement
and make fingerprints diverge from the radio map, which leads
to the deterioration in localization precision. The RSSI impacts
in the shipboard environment are summarized as follows:

1) Severe absorption and reflection effects on wireless
signals are caused by the steel structures of the ship.

2) Different multipath signals are generated in a narrow
structure and multicabin shipboard environment.

3) Shipboard RSSI measurements are severely disturbed by
dynamic changes of ship sailing, which generate a time-
varying effect.

4) RSSI is sensitive to the movements of passengers and
may change significantly in response to human body
masking.

To overcome these problems, a novel localization method,
called spatio-temporal fingerprint (STF) localization, is pro-
posed to decrease the impact of the shipboard environment
and enhance the robustness of the fingerprint localization
system. The main idea is to exploit the complementary advan-
tages of spatial features and temporal sequences to solve the
above problems. To extract the temporal fingerprint features,
a time sequence analysis method called a radio time series
(RTS) is proposed to reduce the effect of time variability
in RSSI signals and adapt to the dynamic changes of the
ship’s environment. To further extract the spatial fingerprint
features, STF localization computes the difference RSSI be-
tween pairs of anchors to reduce the effect of variation among
different anchors. A combination of two dimension-reduction
methods—linear discriminant analysis (LDA) and principal
component analysis (PCA)—is applied to extract the most
location-related features called radio spatial features (RSF).
With the retention of a sufficient number of location features
(namely RSF), irrelevant noise and redundant information are
filtered to reduce the computation and alleviate the multipath
effect of the shipboard RSSI signals. Based on these spatio-
temporal features, a support vector machine (SVM) is utilized
to efficiently match the real-time fingerprints with the radio
map during the online phase. In the experiments reported
in this study, the proposed STF method was applied in a
real-world ship to demonstrate that it improves localization
accuracy in the shipboard environment compared to the tradi-

tional RSSI-based approach. Compared with other traditional
fingerprint techniques, the advantages of STF localization are
as follows:

1) STF localization achieves good localization in shipboard
environments where the traditional fingerprint technique
suffers from dramatic performance degradation. The
basis of the approach is the computation of the difference
RSSI between pairs of anchors and combining this
with raw RSSI data to maintain their independence
information.

2) STF localization takes complementary advantages of
PCA and LDA by combining them in an intelligent
manner. Through the combination, STF localization can
achieve low computation cost and attract the most
location-related features by filtering irrelevant noise and
redundant information.

3) STF localization is adaptive to dynamic shipboard envi-
ronmental changes. Through constructing a time series
of localization features, the approach can match the radio
map without calibration after the ship begins sailing,
thereby achieving more reliable fingerprint features.

The remainder of the paper is organized as follows: in
Section 2, theories that have been applied to localization and
related works are introduced. Section 3 describes the proposed
localization algorithm in detail and Section 4 presents the
experimental procedure and results. Finally, the conclusions
are drawn in Section 5.

II. PRELIMINARIES

In this section, the preliminary background of radio propa-
gation and the measurements to understand the RSSI dynamics
in the shipboard environment are presented. Then, methods to
extract fingerprint features to enhance the performance of the
fingerprint technique are introduced.

A. Wireless Signal Multipath Effect

According to the Friis model [17], the line-of-sight (LOS)
radio propagation path can be described as follows:

Pr = |~p| = PtGtGrλ
2

(4πd)2
, (1)

where Pr is the received signal strength and Pt is the trans-
mitted signal strength, Gt and Gr represent the antenna gains
of the transmitter and receiver, respectively, λ is the signal
wavelength, and d is the distance of radio propagation. ~p is
the radio wave and can be denoted as a vector: ~p = {|~p|, θ},
where |~p| denotes the signal power and θ = 2π(d/λ) is the
phase when the transmitter has a phase of zero.

However, many NLOS paths are generated by reflection
in narrow shipboard environments as illustrated in Fig. 2.
Suppose that there are N paths during propagation. Each of
them can only transmit partial energy to the receiver because
of the absorption of walls and diverse path lengths. As a result,
we can denote the power of the i-th NLOS path as

|~pi| = γi
PtGtGrλ

2

(4πdi)2
, (2)
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Fig. 2. Illustration of the multipath effect in free space and the shipboard
environment.

where γi is the reflection coefficient of the i-th path, which
represents the absorption factor of different materials, and di is
the distance of the NLOS path. Therefore, the received signal
strength is the combination of all paths:

|~p| =

∣∣∣∣∣
N∑
i=1

~pi

∣∣∣∣∣ . (3)

The RSSI at distance d under the multipath effect can be
further expressed as the combination of LOS path power and
NLOS path power:

[Pr(d)]dB = 10n log

(
γ
PtGtGrλ

2

(4πd)2

)
+Xσ, (4)

where n is an indicator that depends on the propagation
environment, and Xσ is a random variable that represents the
uncertainty of the multipath effect given by

Xσ = 10n log

[(
N∑
i=1

γi
PtGtGrλ

2

(4πd)2
sin(θ)

)2

+

(
N∑
i=1

γi
PtGtGrλ

2

(4πd)2
cos(θ)

)2 ] 1
2

.

(5)

In fact, the multipath parameters N , γi, di, and θ are unknown
and nonconstant. The wireless signals that are transmitted
from the transmitter will suffer from reflection because of
the influences of walls and decks. The propagation path di is
randomly extended and the absorption γ is varying according
to the number of signal reflections.

B. Time-variant Behavior

A fingerprint-based method collects a radio map of mea-
surement fingerprints and uses a machine learning classifier
to determine a target’s location using a new fingerprint.
However, dynamic changes during ship sailing will generate
different noisy signals and disturb the RSSI values severely,
which diverge the fingerprints from the constructed map.
Shipboard environmental changes include instantaneous inter-
ference, such as from doors opening and closing, and long-
term changes, such as variations in temperature, humidity,
and weather conditions. Path degeneration occurs when the
environmental dynamic changes contribute to the variation of
the transmission path of the wireless signal. It simultaneously
results in fluctuation and mutation of the RSSI.

Fig. 3 shows the changes and fluctuations at different
communication distances under sailing and anchoring states.
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Fig. 3. RSSI measurements in shipboard environment. (a) Mean RSSI values.
(b) Variances of the RSSI values.

The RSSI continues to show a log-normal behavior with
distance. However, there is severe noise in the curve of the
sailing state, and there are more severe fluctuations in the
RSSI measurement where the transmission distance is large.
Meanwhile, the variance of the RSSI measurement in the
sailing state is much larger than that in the anchored state
at most distances.

C. Fingerprint Feature Extraction Methods

The previous approaches for handling the dynamic envi-
ronment problem can be classified into two categories: radio
map updating and robust feature extraction [16]. Methods of
the first category repeat the site survey procedure to collect
the RSSI datasets and retrain the fingerprint model. However,
this approach is labor intensive and time consuming. Methods
of the second category attempt to extract robust fingerprint
feature to decrease the impact of the dynamic environment,
such as HLF [18], DIFF [19], and SSD [20]. HLF uses the
signal strength ratios between pairs of anchor nodes instead of
the absolute RSSI. DIFF uses the difference of RSSI values
instead of ratios to decrease the computing cost of extracting
ratio features. SSD analyses the Cramér–Rao lower bound
(CRLB) of localization using the difference RSSI and its
performance has been verified theoretically. The difference
RSSI shows good performance. The main advantage offered
in this paper is using the combination of RSSI and difference
RSSI to avoid losing independence information from each
anchor.

Because of the extended dimensions, a large number of
redundant measurements have to be stored. To overcome this
drawback, dimensionality reduction methods are explored to
reduce the computational cost while retaining most of the
information. For example, in [21], kernel canonical correla-
tion analysis (KCCA) was used to maximize the correlation
between the physical location and signal space by matrix
transformation. Fang et al. explored the possibility of per-
forming PCA to project the RSSI signals into a subspace and
improve the positioning accuracy [22]. In PCA, one extracts
the most descriptive data but does not consider the underlying
RSSI values at different locations. LDA can capture the most
discriminative features but has limited effective dimensions
and numerical problems. In this paper, both PCA and LDA
are utilized to extract fingerprint features.
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III. PROPOSED ALGORITHM

In this section, novel position fingerprint features, called
spatio-temporal features, are proposed to improve the ro-
bustness of fingerprint localization. The proposed algorithm
employs a three-step approach, which is described in the
following subsections.

A. Radio Time Series

To reduce the random variation of the RSSI, an RTS is
proposed. In the offline training phase, the localization area is
divided into small grids. The total number of grids is denoted
as K. To construct a radio map, the target node was used to
scan each grid for beacon nodes and extract their MACs and
RSSIs with a measurement period of T = 0.1 s. The primal
fingerprint of the k-th grid can be denoted as

Fk =


rssi11 rssi12 · · · rssi1N
rssi21 rssi22 · · · rssi2N

...
...

. . .
...

rssiM1 rssiM2 · · · rssiMN

 , (6)

where rssimn is the m-th sample data of corresponding RSSI
values of the n-th beacon nodes, which are identified by their
MAC address. The total number of samples is M and the
number of beacon nodes is N . It should be noted that there is
a significant chance of losing signal data from beacon nodes.
The RSSI value is automatically completed at −99 dBm,
which is the minimum signal strength. In addition, we set the
label yk ∈ [1,K] to each location grid. Therefore, the primal
radio map can be constructed as Xo = [F1, F2, . . . , FK ]T .
The label matrix can be denoted as Y = [y1, y2, . . . , yK ]T to
indicate the location information for the radio map.

An RTS is produced by a sliding window, which moves
forward with the primal fingerprint Fk and generates new
feature series of x̂. We define the length of the sliding window
as u, which covers a time period of T × u. The time shift of
two successive time windows is denoted as TS . In the RTS
extraction procedure, one element x̂ from u sets of collected
RSSI data (each column of Fk) is extracted during the window.
An RTS element x̂i can be calculated in a sliding window as

x̂wn =
1

u

(
rssi1n +

u∑
i=2

rssiine
−|rssiin−rssi

i−1
n |

)
, (7)

where w is the index of the sliding window. There is a trade-
off among u, Ts, and the speed of the moving target. In the
experiment, the walking speed of the experimenter was 1 m/s,
and the expected localization accuracy was within 3 m. Hence,
the extraction parameters are given as Ts = 1 s and u = 3. Fig.
4 shows the process of RTS extraction by a sliding window.

B. Radio Spatial Features

Two RSSI values (rssim1 and rssim2 ) are measured from the
m-th packet of two different beacon nodes at distances d1 and
d2. According to Eq. 4, we can define

rssim1 = 10n log

(
γ
Pt1Gt1Grλ

2

(4πd1)2

)
+Xσ1 (8)
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Fig. 4. Extract RTS by a sliding window.

and
rssim2 = 10n log

(
γ
Pt2Gt2Grλ

2

(4πd2)2

)
+Xσ2. (9)

Note that the two factors introduce variation into the mea-
surement: the propagation distance d and multipath effect
factor Xσ . If we assume that the beacon nodes have the same
transmission power, antenna gain, and wavelength (Pt1 = Pt2,
Gt1 = Gt2 and λ1 = λ2), then substituting Eq. 8 and Eq. 9,
we obtain

rssim1 − rssim2 = 20n log

(
d2

d1

)
+ (Xσ1 −Xσ2). (10)

We define the difference RSSI as

x̂mij = rssimi − rssimj , i, j ∈ [1, N ], i < j. (11)

Equation 11 shows that the main factor Nσ , which intro-
duces the RSSI variation, is decreased. The difference RSSI
is more reliable for the ratios between the distances (d1 and
d2). Therefore, the RTS values are also combined with the
difference RSSI into a fused matrix X̂k to make use of both
advantages instead of Fk. X̂k can be denoted as

X̂k =


x̂1

1 · · · x̂1
N x̂1

1,2 · · · x̂1
N−1,N

x̂2
1 · · · x̂2

N x̂2
1,2 · · · x̂2

N−1,N
... · · ·

...
... · · ·

...
x̂W1 · · · x̂WN x̂W1,2 · · · x̂WN−1,N

 , (12)

where W = M × T/Ts is the number of windows. Based on
the fused feature matrix as the fingerprint, we can obtain the
new radio map as Xd = [X̂1, X̂2, . . . , X̂K ]T . The label matrix
is also Y .

There are many latent factors in the fused vector that make
the RSSI distribution different, which can be seen in Fig.5.
Additionally, the dimension of the input fingerprint is changed
from (W , N ) to (W , N(N + 1)/2). To reduce the calculation
burden and eliminate the impact factors, dimensionality reduc-
tion by LDA is considered to extract the most location-related
positioning features (RSF) that are more relevant to location
labels Y . However, to perform LDA, the input matrix should
be invertible. The difference RSSI, which is obtained by
linear transformation, is noninvertible and cannot be directly
used in LDA. Therefore, PCA is implemented in advance
to extract the principal components of position features and
eliminate the singularity of the matrix. The main objective of
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PCA is to find the projection that best represents the dataset.
The transformation matrix A is determined by selecting the
maximum-variance directions of data as follows:

Aopt = arg max
A
|ATSΣA| (13)

where SΣ ∈ R(N(N+1)/2)∗(N(N+1)/2) is the covariance matrix
of radio map Xd. It can be calculated as:

SΣ =

S∑
s=1

(X̂s − X̄)T (X̂s − X̄) (14)

where X̂s is the s-th row vector of the matrix Xd, S = K×W
is the row number of Xd, and X̄ is the global mean of all X̂s.
In fact, the solution Aopt is a subset of eigenvectors of matrix
SΣ:

Aopt = [q1, q2, . . . , qN(N+1)/2] (15)

where qi is a N(N + 1)/2 dimension vector ranked the
eigenvalues λi in descending order, which quantifies the
information that contributes to the i-th eigenvector. Due to
the covariance matrix is a positive semi-definite symmetric
matrix, the eigenvectors are geometrically orthonormal and
statistically uncorrelated. This property guarantees that the
generated feature components are uncorrelated to each other.
The new feature matrix Xp ∈ RW∗(N(N+1)/2) can be obtained
by:

Xp = Xd ∗Aopt (16)

After eliminating the singularity, LDA can extract the dis-
criminative features of each location fingerprint. The main idea
of LDA is to find a projection that will give a large separation
between the means of the projected classes (where we define
each location grid fingerprint as a class) while giving a small
variance within each class. The total within-class variance
matrix can be defined as

SW =

K∑
k

rk(Xk
p − X̄k

p )(Xk
p − X̄k

p )T (17)

where Xk
p is the k-th vector of Xp, X̄k

p is the global mean
of the k-th vector of Xk

p , and r is the discriminant coefficient
rk = 1 when xt belongs to the k-th class; otherwise, rk = 0.
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Fig. 6. Flow chart of STF extraction process.

The total between-class scatter matrix of different positions
of feature samples can be represented as:

SB =

K∑
k=1

Nk(Xk
p − X̄t

p)(X
k
p − X̄k

p )T (18)

where Nk =
∑K
k rk. To transform the labeled set of localiza-

tion features from Xp into a labeled set in subspace Xl, the
objective is to find an (N(N + 1)/2)× t-dimensional matrix
B, which can be obtained by

Bopt = arg max
B

J(W ) =
|BTSBB|
|BTSWB|

(19)

Maximizing J(W ) is the main step of LDA, and the
eigenvector of S−1

W SB with the maximum eigenvalue is the
solution. By choosing the first t vectors, the LDA projection
matrix Bopt can be expressed as:

Bopt = [e1, e2, . . . , et] (20)

If projections parameter t is suitably chosen, the RSF Xl

can contain large amounts of location-related information and
fully removed redundancy. Xl can be obtained by:

Xl = Xp ∗Bopt (21)

To determine the parameters t of the matrices B, the
following mechanism is proposed: t is selected depending
on the dimension of the difference RSSI resulting from the
goal of breaking the singularity by PCA. The selection of t is
determined by the relative proportion of eigenvalues:∑t

i=1 λi∑N(N+1)/2
i=1 λi

≥ δ, (22)

where t is the target RSF dimension. We can set a threshold
δ to represent the percentage of the total information. In
most cases, δ can be selected as 90% to retain most of the
information. The transformations A and B are applied in both
the training and online phases.

C. SVM-based Localization Algorithm

To track the positioning problems of search, contrast, and
recognition in a radio map, four machine learning classifiers
are tested: the K-nearest neighbor (KNN) method [23], logistic
regression, SVM, and an artificial neural network (ANN).
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Among them, SVM is a supervised learning algorithm that has
been used in radio map classifiers. The basic idea of SVM is to
map the samples as points in multidimensional space and find
an optimal separating hyperplane that maximizes the margin
between categories [24]. SVM can use labeled positioning
features to train a model that can predict the locations of the
new radio features. The radial basis function (RBF) kernel is
chosen to handle the problem of different location features
being nonlinear. We utilized the open software LIBSVM tools
[25] to implement the backend localization algorithm. The
whole process of the STF method is shown in Fig. 6.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the RSSI signals in the shipboard environ-
ment are studied and the performance of the STF method is
evaluated and analyzed.

A. Environment and Network

In this paper, the shipboard sensor network nodes are de-
signed with Texas Instruments (TI) CC2530 chips, which meet
the IEEE 802.15.4/ZigBee protocols and operate in the 2.4
GHz range. Each sensor node is classified as either a receiving
or beacon node. Beacon nodes are fixed inside the ship and
continuously broadcast radio messages at a rate of 1 package
per minute. Receiving nodes are brought by passengers. These
nodes collect the RSSI information measured from the beacon
nodes and upload it to a server to estimate locations.

The experiments are conducted on the main deck of the
inland passenger ship Yangtze 2. The main deck area includes a
living room (60 m × 20 m), a dining room (40 m × 20 m), and
a central hall (20 m × 20 m). These measurements are used
during cruises between Chongqing and Yichang (China). A
network of nine beacon nodes is deployed on the deck. Eighty
reference locations are identified and marked by numbers on
the floor. Neighboring reference locations are separated by
200 cm. RSSI at each location is collected for 60 samples.

B. Shipboard Radio Propagation

We performed several experiments to estimate the average
losses and propagation parameters in different scenes of the
shipboard environment. As introduced in Section II, given
fixed transmitter and receiver antenna gains Gt and Gr and
fixed transmission power Pt, three parameters would affect
the path loss model: the path loss exponent n, the absorption
coefficient γ, and the standard deviation σ of the random noise
variable Xσ . To study the path loss model of the shipboard
environment, several transmitters and receivers were placed at
different locations on the main deck at different distances. The
RSSI values of different ranges and scenes were collected and
a linear regression with a minimum mean square error was
utilized to determine the parameters of the path loss model in
Eq. 5 for each scene. Table I list the parameters in the four
scenes. It also includes the average path loss at d0 = 1 m and
the coefficient of correlation r between the measurements for
the four scenes.

As we can see, shipboard scenes share different propagation
parameters. The correlation coefficients of the four scenes

TABLE I
PATH-LOSS PARAMETERS IN DIFFERENT SHIPBOARD SCENARIOS.

Scenario n σ γ r PL(d0)

Corridor −1.7 8.06 0.81 0.62 −7.7

Central hall −1.4 7.13 0.85 0.83 −9

Dining hall −0.9 5.16 0.82 0.80 −8

Passenger cabin −0.8 4.67 0.83 0.62 −8.9

Fig. 7. RSSI distributions in dynamic shipboard environment.

exhibit a bad fit between the measurement results and the
path loss models. We can find that the scene with the worst
model coefficient is the corridors. This results from the ship
architecture that included numerous watertight doors and metal
walls. Range-based methods, which transform RSSI values to
distance information, are not workable in shipboard environ-
ments. Instead, the fingerprint features of RSSI can be more
reliable than the range to indicate the location signature.

C. RSSI Fluctuations

In Section II, the effect of the ship sailing on shipboard
RSSI measurement was simply introduced. Because the ship
sailing condition keeps changing and the engines working can
affect the quality of wireless communication, it is necessary to
conduct the RSSI measurements under different ship sailing
states. In this part, the RSSI fluctuations in the shipboard envi-
ronment under different ship states are tested and analyzed. To
measure the ship sailing states, we obtain real-time ship speed
data from the ship’s internal interface and conduct a point-to-
point RSSI measurement test. The receiver is 5 m away from
the transmitter and the RSSI values of signal transmission are
collected by receiving data packages for three days.

The RSSI probability distributions over time and ship speed
are shown in Fig. 7. As can be seen, the RSSI values are
basically stable at −65 dBm when the ship is anchored,
and they start to fluctuate in the range of 5–15 dBm when
the ship speed is 6 nm/h. Once the speed exceeds 6 nm/h,
the distribution of RSSI varies from −80 to −40 dBm. The
RSSI variance changes as the ship speed increases. The RSSI
variances at each speed section are 0.24, 0.45 and 0.92,
respectively. The variation of RSSI mean values and standard
variances over time and corresponding ship speed are shown
in Fig. 8. As can be seen, the mean of the RSSI values during
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Fig. 8. RSSI distributions in each ship speed.
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Fig. 9. RTS visualization. (a) RTS of stationary target. (b) RTS of moving
target.

the voyage remained stable when the ship speed was <6 nm/h.
Once the speed exceeded 6 nm/h, the RSSI shows a slight
change at different speeds. The standard variance of the RSSI
is changing follows the ship speed increasing. The RSSI values
are basically stable at −65 dBm when the ship is anchored,
and they start to fluctuate in the range of 5–15 dBm when the
ship sets sail.

D. STF Performance Evaluation

In this part, the performance of STF localization is analyzed.
First, RTS and RSF are evaluated and compared with RSSI-
based fingerprints. Fig. 9a shows the RSSI and the RTS of a
stationary target when the ship is sailing. The RSSI fluctuates
in the range of 4 dBm and changes irregularly. The RTS
range of variation is reduced to 2 dBm. Fig. 9b shows the
performance on the moving target. As can be seen, the RTS
extraction can at different ship states. Fig. 10a shows the
primal RSSI-based fingerprint distribution in two-dimensional
space using PCA for visualization. The points different colored
points represent the different RSSI positions. There is a large
overlap between points of different colors, which makes the
different location features difficult to classify. Fig. 10b shows
the RSF distribution in two-dimensional space, which has a
better classification character. Here, the primal 9-dimensional
RSSI database is used, and a 55-dimensional difference RSSI
is obtained. The dimension of the PCA projection is selected
to be 50 and that of the LDA is 3.
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Fig. 10. Fingerprint visualization. (a) RSSI-based fingerprint. (b) RSF
fingerprint.
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Fig. 11. Lecture theater with node locations.

To evaluate the robustness of STF against environmental
changes, a radio map is collected in the lecture theater of the
ship, as shown in Fig. 11. The area is approximately 13.2 m ×
9.7 m and is covered by four ZigBee beacon nodes. Forty-nine
locations are identified and marked with a red ‘×.’ Neighbor-
ing locations are separated from each other by 100 cm. In
this experiment, RSSI information of the four beacon nodes is
measured 60 times at each reference location when the ship is
anchored; this dataset is called the ‘anchored dataset’. After
the ship sets sail, the RSSI data are collected again and this
dataset is called the ‘sailing dataset’. The changes in the radio
map caused by the dynamic environment are demonstrated
in Fig. 12a. Each cell represents a reference location, and
dark color means that its RSSI changes enormously. This
illustrates that the RSSI-based fingerprint can be significantly
affected by the environment and that the impact is irregular.
Fig. 12b illustrates that the changes in STF are smaller (paler)
under environmental changes and that STF localization has
better robustness. The confusion matrices of the RSSI and
STF localization are presented in Fig. 13. We can clearly
see from Fig. 13b that the localization results are now placed
along the diagonals of the matrices, instead of concentrating
around a few off-diagonal elements. This suggests that the STF
localization is able to extract the stable fingerprint features
against the dynamic shipboard environment. From these two
figures, we find that our proposed method is more stable under
environmental changes than the RSSI fingerprints.

Next, four machine learning classifiers were evaluated:
KNN, LR, ANN, and SVM. Table II lists the error of each
fingerprinting model, which is trained on anchored STF data
and tested on sailing STF data. KNN performs poorly com-
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Fig. 12. Changes in different fingerprints. (a) RSSI. (b) STF.
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Fig. 13. Confusion matrices of localization after the environment changes.
(a) with RSSI features. (b) with STF features.

TABLE II
ACCURACY CLASSIFICATION FOR FOUR METHODS

Methods 2m 3m 4m 5m 6m 7m

SVM 49.6% 82.4% 96.6% 98.3% 99.1% 99.2%

ANN 50.1% 71.2% 83.3% 90.8% 95.4% 97.3%

LR 42.5% 56.3% 75.2% 84.8% 88.7% 94.3%

KNN 29.3% 49.4% 80.7% 83.5% 85.3% 93.2%

TABLE III
ACCURACY MEASUREMENTS FOR FOUR FEATURES (TRAINING: ANCHOR

DATA, TESTING: SAILING DATA)

Features 2m 3m 4m 5m Average (m)

STF 49.6% 82.4% 96.6% 97.3% 2.92

SSD 38.4% 71.3% 89.3% 96.6% 3.30

HLF 36.4% 60.2% 78.1% 89.5% 3.27

RSSI 9.8% 24.4% 45.3% 71.2% 4.50

pared with the other methods, even using the RSF radio map.
The accuracy of KNN only reaches 80% if the separation
is >4 m, while SVM can achieve the same accuracy at a
separation of 3 m. Increasing K cannot improve the accuracy
of KNN. LR also performs relatively poorly. Its accuracy is
higher than that of KNN when the separation is <3 m and
becomes similar after the separation increases to >4 m. At a
separation of 3 m, the recognition accuracy is 56.3%, whereas
SVM achieves 82.4%. The adopted ANN contains an input
layer, a hidden layer (a logistic function with 100 neurons),
and an output layer. The result indicates that the SVM-based
positioning algorithm still provides higher accuracy than the
ANN-based algorithm.
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Fig. 14. Localization error. (a) Environmental change. (b) Environmental
stability.
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Fig. 15. Trajectory of a subject walking along the deck.

E. Location Estimation Accuracy

In this section, the localization accuracy of STF localization
is evaluated by cross-validation. Here, cross-validation refers
to training the model using the ‘anchored dataset’ and testing
the model using the ‘sailing dataset.’ SVM is adopted to
model the radio map in this experiment. Fig. 14a displays the
cumulative positioning errors of four features—RSSI, SSD,
HLF and STF—without cross-validation. These models are
both trained and tested on the anchored dataset. These results
show that the performance of the proposed STF localization is
similar to that of RSSI when the ship remains anchored. Fig.
14b compares the positioning results using cross-validation, in
which the training data are selected from the anchored dataset
and the testing data are selected from the sailing dataset.
Here, STF localization achieves an accuracy of 82.85% at
a separation of 3 m, while SSD, HLF, and RSSI obtain
accuracies of 71.31%, 60.52%, and 24.83%, respectively. The
accuracies of fingerprinting are numerically reported in Table
III, including a 2–5 m separation and the mean distance error.
The result shows that the accuracy of STF localization is
2.92 m, whereas that of the RSSI-based fingerprint is 4.50 m.

Finally, the robustness of trajectory estimation by STF
localization is verified. An experimenter walked through these
reference points with a receiving node. The result is shown
in Fig. 15. Over a range, the STF localization method can
locate targets within 2.5 m of their actual positions with 90%
accuracy, which is acceptable for most LBS applications. The
average tracking latency of this system can reach 0.01 s,
which is significantly shorter than that of previous localization
methods.
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V. CONCLUSION

A key challenge for shipboard fingerprint localization is
how to handle the problem of dynamic environmental change.
This paper proposes an enhanced localization method, spatio-
temporal fingerprint localization, to defend against such vari-
ation effects. The main idea is to alleviate the effects of two
phenomena on wireless signals in the shipboard environment:
signal multipath and ship motion. An extraction method using
radio spatial features is proposed to extract the highly location
related features, which can reduce the interference of the signal
multipath in the shipboard environment. Additionally, a radio
time series is proposed to filter irrelevant noise to reduce the
effects of ship motion. The experimental results indicate that
the localization error is 2.92 m. This method significantly
improves the results compared with those from traditional
fingerprint localization methods.
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