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SWIM: Speed-aware WiFi-based Passive
Indoor Localization for Mobile Ship Environment
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Abstract—Accurate and pervasive device-free indoor localization with meter-level resolution is critical for large cruise and passenger
ships due to safety-critical rescue and evacuation requirements when accidents occur. However, existing localization techniques would
severely suffer on ships because of their unique mobility characteristics. In this paper, we take the first attempt to build a ubiquitous
passive localization system using WiFi fingerprints for the mobile ship environment. By conducting extensive experiments and
measurements during several cruise trips, we identified a major influence factor on the fingerprints in the mobile environment: varying
the ship speeds may significantly change the patterns of fingerprints at runtime. Since it may be too expensive to identify the
fingerprints associated with different speeds, we propose an efficient localization method, namely SWIM, which calibrates the
fingerprints from only a single-speed scenario to multiple-speed scenarios using a signal reconstruction analysis. SWIM is designed to
learn the predictive fingerprint variation introduced by environmental speed changes and reconstruct the original fingerprints to adapt
to the runtime speed scenarios. We have implemented and extensively evaluated SWIM on actual cruise ships. Experimental results
demonstrate that SWIM improves localization accuracy from 63.2% to 82.9%, while reducing the overall system deployment cost by
87%.

Index Terms—Device-free indoor localization, Mobile ship environment, Channel State Information (CSI), WiFi
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1 INTRODUCTION

GUARANTEEING safety at sea has always been of the
highest priority in the passenger ship industry ever

since the catastrophic RMS Titanic accident in 1912. Recent
tragedies (e.g., 442 deaths in the Oriental Star cruise accident
in 2015 [1]) have shown that fatal accidents may happen
even nowadays, and improving the evacuation and rescue
process of a damaged ship is one of the most critical tasks.
In the event of such catastrophes, an accurate and pervasive
indoor localization supports rescue/evacuation operations
and dramatically reduces the time needed to bring the ship
under control [2] [3].

Indoor localization is a well-studied research topic [4].
Various systems solutions have been proposed, such as
radio-frequency identification (RFID) based systems [5] [6]
and WiFi-based systems [7] [8] [9]. In these systems, users
need to wear certain devices (e.g., mobile phones or RFID
tags) to collect data on their current location. These solutions
are considered to be obtrusive to the users. In addition, it is
difficult to guarantee that users would wear the equipment
when an emergency happens. Therefore, the technique of
device-free passive (DfP) detection, which detects objects’
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locations without attaching any device, has been developed
in recent years [10] [11]. With the expansion of wireless
networks, it is possible to passively localize people by
capturing the radio-frequency (RF) changes caused by hu-
man body reflection. Unlike vision-based DfP solutions, RF-
based approaches can work at non-line-of-sight scenarios,
avoiding privacy concerns [12]. In particular, the recently
exposed channel state information (CSI), which can be ob-
tained from commodity Wi-Fi network interface controllers
(NICs), can present subcarrier-level channel measurements.
Several CSI-based localization solutions, which may provide
sub-meter resolution localization accuracy, were proposed
recently [13] [14] [15].

Unfortunately, to the best of our knowledge, a CSI-based
DfP localization system for the mobile environment, e.g.,
ships, is still absent. The existing CSI-based localization
approaches fundamentally rely on the assumption that the
environment is static, which enables an offline-built local-
ization fingerprints map to be used online for correlating
the human locations with the CSI measurements. However,
based on our findings (see Sec. 4 for details of experiments),
the RF propagation in a mobile indoor environment can
be dramatically influenced by the corresponding dynamic
outdoor environment factors (such as sailing speed, ac-
celeration motion, turning motion, weather condition, or
altitude). In this case, any small change of environmental
factors on a ship would dramatically changes the CSI fin-
gerprints and requires updating the entire fingerprint map
at all possible sailing conditions, which is (if ever possible)
labor-intensive and time-consuming; this makes the system
deployment too expensive for any practical setting. The
auto-calibration method that self-updates the fingerprint
map at runtime, as recently described in [16], cannot guar-
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antee performance because the ship environment changes
unpredictably and instantaneously. Unpredictable dynamic
factors (such as sailing speed) would lead to insufficient
and delayed calibration of data collected at runtime, which
causes unacceptable errors in updating the fingerprint map.

In this paper, we address the problem of indoor local-
ization in the mobile ship environment by answering the
following questions: can we build a DfP localization system that
(1) works well in a wide range of mobile environmental conditions,
(2) is capable of providing fine-grained location information with
high accuracy, and (3) has an affordable system deployment cost
(in terms of time consumed for site survey)? To develop an
efficient and practical solution, we first conducted extensive
measurements and experiments, including implementing
and testing existing localization solutions during several
voyages on a real-world cruise ship. By analyzing the
experimental data, we identified several key insights that
motivated our design. First, among major environmental
factors, the ship’s speed is the dominating factor that may
impact CSI fingerprints. Moreover, the CSI fingerprints for
the same ship’s speed are found to be stable and consistent.
Based on these findings, we design and implement SWIM, a
Speed-aware WiFi-based passive Indoor localization system
for the Mobile environment, which is applicable to the mo-
bile environment and improves the meter-level localization
accuracy. SWIM is designed to learn the predictive finger-
print variation introduced by environmental speed changes
and to reconstruct the original fingerprints in multiple speed
scenarios. SWIM can adapt to any runtime speed scenarios
and significantly reduce the overall system deployment cost
from labor-intensive site survey. Experiments conducted on
a real-world ship show that SWIM improves localization
accuracy from 63.2% to 82.9% while reducing the overall
system deployment cost by 87%, compared with the state-of-
the-art localization methods including Pilot [13], PADS [17],
PinLoc [8], and AutoFi [16].

In summary, the main contributions of this study are as
follows:

• To the best of our knowledge, this is the first work
that deals with indoor localization in a mobile ship
environment, where the wireless signals are severely
affected by deformation of the ship along with dif-
ferent sailing states, which degrade the performance
of the state-of-the-art device-free localization tech-
niques.

• By studying the relationship between wireless signal
variations and various ship sailing factors (through
extensive measurements in a real-world passenger
ship), we are the first to identify that the speed of
the ship is the dominating factor that may affect the
wireless signals. We further demonstrate that the CSI
variation maintains a regular distribution when the
ship’s speed holds.

• We design and implement our device-free meter-
level localization system for mobile ship environ-
ments, SWIM, on commercial WiFi devices, by recog-
nizing the pattern of the CSI variation for each speed,
and we scale the prebuilt fingerprint map into mul-
tiple speed scenarios. Experiments show that SWIM
can improve the overall localization accuracy by 19%
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Fig. 1. Experiments scenes in passenger ship ‘Yangtze 2’.

and reduce the system deployment cost by 87%.

The rest of the paper is organized as follows. We first
describe the motivation of our work in Section 2 and then in-
troduce preliminaries in Section 3. In Section 4, we report the
empirical study results about the relationship between the
WiFi CSI information and the human activities, followed by
the SWIM framework design. Section 6 presents the system
performance evaluation results. We review the related work
in Section 7. Finally, we conclude our work in Section 8.

2 MOTIVATION

In this section, we motivate our design by showing the
unacceptable performance of the state-of-the-art localization
solution on a moving ship.

2.1 Setup of the Pilot System

Pilot [13] is a state-of-the-art CSI-based DfP localization
scheme, which uses CSI correlations of all subcarriers as
a fingerprint to localize targets. It is implemented with
commercial IEEE 802.11n NICs and can achieve a meter-
level localization accuracy in general indoor scenarios. To
evaluate this system, we deployed Pilot on a real-world
passenger ship called “Yangtze 2.” With the deployment
setup described in [13], we conducted experiments in two
different indoor ship scenes: a lobby which covers an area
of 9.7m×13.2m and a corridor which covers 1.5m×12.8m.
We divided the localization area into square grids. A total
of 108 locations were chosen for evaluation. The distance
between two neighboring locations was set to be 1 m.

In the experiments, two pairs of detecting points (DPs)
and access points (APs) are placed, as shown in Fig. 1.
The wireless APs are TP-LINK routers, operating on the
2.4 GHz band with a bandwidth of 20 MHz, to transmit
information to DPs. DPs are standard ThinkPad T-series
laptops equipped with commercial 802.11n 5300 NICs and
the Linux kernel 2.6.34 operating system. To create the
localization communication, the DPs constantly pings the
APs with a frequency of 10 packets per second (pks). We
recruit three volunteers (two male and one female; age: 21—
29 years; height: 1.6—1.82 m; weight: 51—90 kg) to perform
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Fig. 2. Pilot single entity localization accuracy with different link num-
bers.

various daily activities in the two test environments over
four ship voyages. According to the procedure of the Pilot
system, we recorded the passive CSI fingerprints of each
location when the ship was anchored. Then, we tested the
system in two environment states:

• Anchored state: The Pilot system was evaluated with
respect to different numbers of samples collected as
fingerprint and different APs when ship anchored.
The anchored state test dataset was collected at each
location with three volunteers to evaluate the local-
ization performance in Pilot.

• Sailing state: To evaluate the system when the ship is
moving, we test it again (using the same experimen-
tal procedure) after the ship sets sail. The sailing state
test dataset was collected during the ship voyage
(five days with different sailing conditions).

2.2 Performance of Pilot in indoor ship environment

The results are presented in Fig. 2 and Fig. 3. The perfor-
mance of Pilot at the anchored ship state is much better
than at the sailing state in both lobby and corridor. In the
anchored ship environment, Pilot achieves high accuracy,
which is similar to the results reported in [13]. As shown in
Fig. 2(a), Pilot can achieve over 90% (up to 93.2%) accuracy
in the lobby with at least four wireless links. The accuracy
increases when aggregating the CSIs from multiple APs.
If the number of collected samples increases (from 20 to
100 samples of each location), the accuracy also increases
by nearly 10% (up to 9.4%) according to Fig. 3(a). Similar
performance is obtained in the corridor scenario. According
to Fig. 2(b) and Fig. 3(b), the localization accuracy improves
if the numbers of links and samples increase.

However, as the ship starts sailing, the maximum ac-
curacy of Pilot dramatically degrades to 63.2% (in both
scenarios) with the maximum number of links and samples.
As shown in Fig. 2(a), the location distinction accuracy of
Pilot is down to 41.2% with one link. Increasing the APs
and collecting samples slightly improves accuracy to 58.9%,
which is still largely behind the anchored ship state. The
effect of increasing number of samples in the corridor on
accuracy is limited, as shown in Fig. 3(b). The experimental
results are consistent for two tested locations. This indicates
that the sailing state leads to an obvious decrease in local-
ization accuracy of CSI-based passive indoor localization
techniques. From empirical experiments in scenarios with
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Fig. 3. Pilot single entity localization accuracy with different sample
numbers.
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Fig. 4. Illustrate basic idea by collecting CSI fingerprint.

two ship states, we can conclude that the Pilot system cannot
be directly used in mobile environments such as ships.

3 PRELIMINARIES

In this section, we explain why existing CSI-based indoor
localization techniques lose their accuracy in the mobile
ship environment. We start by introducing the necessary
background on CSI-based indoor localization techniques.

3.1 Background of CSI-Based Indoor Localization
CSI is a fine-grained physical layer information that de-
scribes how the Wi-Fi signals propagate through the wire-
less channel at the subcarrier level. In the frequency domain,
each transmitted symbol X(f) is modulated on a subcarrier
frequency f , and the received symbol Y (f) depends on the
wireless channel frequency response (CFR) H(f):

Y (f) = H(f)×X(f) (1)

CSI is the sample version of the CFR and depicts the
amplitude and phase of a subcarrier:

H(fi) = |H(fi)|ejsin(∠H(fi)) (2)

where fi is the central frequency of subcarriers (i =
1, ...,M ), |H(fi)| denotes its amplitude, and ∠H(fi) de-
notes the phase. For each transmission, a group of CSI
measurements on M = 30 subcarriers (corresponding to
Ng = 2 for 20 MHz and Ng = 4 for 40 MHz, where Ng
is the tone grouping factor) are exported by leveraging a
commercial off-the-shelf Intel 5300 NIC with an open source
driver [18].

To localize a human by the wireless signal in a passive
way, the CSI is used to mark the locations by a location
indicator called fingerprints. As shown in Fig. 4, a human
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object in the localization space would reflect and absorb
the WiFi signals, generating a unique signal propagation
paths. Thanks to frequency diversity of CSI, it can reflect the
varying multipath reflections and is capable of capturing the
unique WiFi features [13]. The fingerprint-based technique
is proposed to construct a mapping between the CSIs and
location of the human target in advance, which is called a
radio map. The radio map construction part is known as the
offline phase, and the matching part is known as the online
phase. In the offline phase, a human target stays in each
location (labeled as 1—16 in Fig. 4) and DPs record the CSIs
in a database. In the online phase, the human object can be
localized by matching the current CSI information that DP
received from the database.

3.2 Problem of Environment Deformation

As discussed above, CSI-based DfP localization techniques
explore the slight differences in signal propagation, re-
flection, and absorption if a human is present in the en-
vironment. This technique can be very accurate when a
fundamental hypothesis holds: the localization environment
is consistent in the offline phase and the online phase.

However, this hypothesis does not hold in a mobile ship
environment, which is dynamic and inconsistent. Unlike the
static indoor environments (e.g., office building), ships that
are built with engines and propellers can also sail in the sea
with various speeds. When voyaging, ship’s hull is subject
to inevitable deformations, including static angular defor-
mation and dynamic (elastic) angular deformation, caused
by the external stress of loads, waves, and/or environmental
temperature changes [19]. The main reasons for the ship
static angular deformations, which can amount to 1◦, are
the redistribution of freight and fuel on it and non-uniform
heating of different parts of the ship under the sun. Dynamic
angular deformations, which can be as high as 1◦—1.5◦,
are caused by hull motion, wave impact, helm steering,
etc. In recent years, researchers have studied and developed
ship’s deformation measurement and correction techniques,
including the inertial measurement units matching method
which is shown in Fig. 5. The practical measurement results
show that the values of such deformations for ships are
equal to units of angular minutes in the plane of the deck,
dozens of angular minutes in the longitudinal central plane,
and fractions of an angular minute for the torsion angle.
For typical frequency of 0.1 Hz and 0.3 Hz, the angle
displacement is obvious [20]. Owing to these deformations
(mainly dynamic) of the sailing ship, the angular position of
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Fig. 6. Illustrate how ship deformation affect wireless signals.
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peripheral equipment (radar antennas, WiFi antennas, op-
tical systems, etc.) may differ significantly from the original
devices setup parameters [21].

As a result, with the existing WiFi-based DfP localization
solutions such as Pilot, the CSI radio map of all locations is
built in the offline phase. During the sailing, the ship’s hull
deforms and changes the WiFi signal paths, as illustrated in
Fig. 6. Thus, the newly detected CSI will become different
from those already stored in the database, leading to signif-
icant degradation of accuracy.

4 MEASUREMENT AND HYPOTHESIS

Based on the preliminaries, in this section, we investigate
in detail how the ship’s sailing affects ship’s deformation
by observing the measured CSI and ship sensors data.
Two hypotheses of the relationship between CSI fingerprint
and mobile environment factors are proposed. We validate
these hypotheses by extensive measurements in a real-world
passenger ship. The hypotheses would provide insight for
our eventual system design.

4.1 How Dynamic Environment Affects CSI
We first deployed an AP and DP in the indoor ship en-
vironment to monitor WiFi signals. The DP is five meters
from the AP and it generates packets every 10 milliseconds
on average. We then deployed two smartphones with GPS,
accelerometer, gyroscope, and thermometer in the ship to
measure and record the ship motion information. To study
how CSI behaves under different environmental factors, we



5

−5 0 5
First principal component

−5.0

−2.5

0.0

2.5

5.0

Se
co

nd
 p
rin

ci
pa

l c
om

po
ne

nt 0

5000

10000

0 10000

(a) CSI projection to the first two
principal components.

Speed Acc TurnAltitudeTemp HumidBright
6

4

2

0

1

3

6

8

C
or

re
la
tio

n 
co

ef
fic

ie
nt

-0.18
-0.05 0.05 -0.02 0.03 -0.05 0.05

0.25

-0.04 -0.05 -0.00 -0.04 0.05 -0.08

First component
Second component

(b) Pearson correlation coefficient
between CSI projection and ship
factors.

Fig. 8. Main influence factor identification in hall.

record the CSI and ship sensors data simultaneously. The
CSIs and corresponding ships’ speeds and headings are
plotted in Fig. 7.

According to sensor data, we can divide the process
into three phases: the anchored phase, speed up phase,
and consistent speed phase. As can be seen in Fig. 7, the
CSIs are stable when the ship is anchored. In this phase,
the fingerprint-based localization techniques can be very
accurate. After the ship starts sailing, we clearly observe that
CSI dramatically changes when the ship moves. It implies
that the ship’s deformation happens when the ship’s speed
changes. After the ship enters the consistent speed phase,
the CSI variation decreased and shows a statistical structure.

4.2 Main Influence Factors of Ship’s Deformation

We now present our first hypothesis and the corresponding
validation through extensive experimental measurements.

Hypothesis 1: In all factors that affect ship’s deformation, the
moving speed of the ship is the dominating influence factor.

Experiment 1: To verify this, we considered seven en-
vironmental factors of a mobile ship scenario. The ship
motion factors includes: 1) ship’s speed, 2) acceleration, 3)
angular velocity, and 4) altitude of ship’s location. Outdoor
factors are 5) temperature, 6) humid, 7) air pressure, and
8) brightness, which describe the weather. To find the main
factor that influences the ship’s deformation, indoor WiFi
channel state is chosen to measure the slight deformation of
the ship indoor environment. Due to the CSI measurements
contain multiple subcarriers information, we first adopt
an unsupervised technique, namely principal components
analysis (PCA) [22], to capture the variation of CSI and
reduce the data dimension. Based on the lower dimensional
channel states, a supervised univariate feature selection
method, called Pearson correlation coefficient, was selected
to measure the correlation between each factor with the WiFi
channel. The CSI and ship sensor data are simultaneously
collected in a passenger room and a meeting room in a real-
world ship, as described in Section 4.1.

In each scenario, we collect n packets of CSIs into H ,
which is n×m matrix, and m represents the number of sub-
carriers. The corresponding environmental information is
recorded synchronously: ship’s speed V = [v1, v2, ..., vn]T ,
ship’s acceleration A = [a1, a2, ..., an]T , angular velocity
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of ship’s turning Ω = [ω1, ω2, ..., ωn]T , altitude of ship’s
location L = [l1, l2, ..., ln]T , temperature of indoor environ-
ment T = [t1, t2, ..., tn]T , humid U = [u1, u2, ..., un]T , air
pressure measured by a barometer B = [b1, b2, ..., bn]T , and
brightness of the day D = [d1, d2, ..., dn]T .

Before performing PCA, we standardize the CSI matrix
H to ensure that all the data are treated on the same scale.
The standardized matrix is denoted by X. The PCA attempts
to find the projection that best represents the dataset by
selecting the maximum-variance directions and transforma-
tion matrix A as follows:

Aopt = arg max
A
|AT ΣA|, (3)

where Σ is the covariance matrix of all vectors of X. Solution
A is in fact a subset of eigenvectors of Σ as

A = [e1, e2, ..., em], (4)

where ei is the i-th eigenvector obtained from the eigen-
decomposition of the matrix Σ. The eigenvalue correspond-
ing to ei is λi, which quantifies the information contributed
by the i-th component. The principle components ei are
selected according to the order of eigenvalues λi. Based on
the transformation matrix A, we can obtain the projection
by

Yd = AT
(d)X, (5)

where Yd is the projection of the d-th component, and AT
(d)

is the transpose of the d-th row of the transform matrix A.
After normalizing and filtering the sensors data, Pearson

correlation coefficients r can be obtained by:

ρYi,Zi
=

E(Yi − Ȳi)(Zi − Z̄i)

σYi
σZi

(6)

where Yi ∈ {Y1, . . . , Yd} is the CSI projection, and Zi ∈
{V,A,Ω, L, T, U,B,D} is the ship sensors’ data. Ȳ and Z̄
represent the mean value of each vector respectively. The
value of r is between [−1, 1], which denotes positive or
negative correlation.

The results of two scenarios are shown in Fig. 8 and
Fig. 9. To visualize the CSI behaviors during the ship
sailing, we illustrate the first two components CSI projec-
tion (Y1, Y2). The eigenvalues of these two components are
λ1 = 7.03, λ2 = 6.65. According to PCA theory, these two
components contain most of the information of X, for they
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Fig. 10. CSI measurements of subcarrier #5 under different ship speed
of 15 km/h at a same day.

contribute over 90% of information on the data distribution.
The data are scattered in Fig. 8(a) and Fig. 9(a), and the his-
tograms of each component are also shown. The coefficients
of each ship factors with these two components projection
are calculated and shown in Fig. 8(b) and Fig. 9(b). It can be
observed that the speed vector is the most significant factor
that influences both Y1 and Y2. The coefficient of speed is the
highest from seven factors in both scenarios; its influence in
the passenger room is higher because of its rich multipath
effect in the environment.

These results show that the speed is the dominant factor
that affects the ship’s deformation and CSI in a mobile ship
environment.

4.3 Ship’s Speed and CSI Fingerprints

As shown in the experiment from Section 4.1, the CSI tends
to be stable after the ship enters the consistent speed state.
Based on this observation, we present another hypothesis
and its corresponding validation.

Hypothesis 2: With the same ship’s speed, the deformation of
the ship is the same, and the CSI can exhibit a regular statistical
structure.

Experiment 2: To verify this, we conducted another set
of experiments to inspect if the variant feature of CSIs is
stable for a given speed in the same location at different
time. Additionally, we record the CSI distributions with
different speeds on the same day to examine the speed’s
effect on CSI fingerprints. Since the tables, chairs, and some
windows in the ship are all fixed at the manufacturing
phase, the daily environmental changes (moving chairs or
opening/closing windows) are not considered in this exper-
iment. The experimental speed and time are described in
Table 1. We deploy speed sensors and a pair of AP/DP in
the sailing ship to record the ship’s speed data and the CSI
fingerprints of the same volunteer at a fixed location. Our
goal is to inspect whether the CSI fingerprints are the same
for a fixed speed. During the experiment, we randomly
choose 5 different times during a 3-day window to test the
CSI when speed is consistently at 15 km/h both in day and
night (Dataset: 1 and 6 to 9). To validate the speed’s effect
on CSI fingerprint, we record the CSI fingerprints under
different speed on the same day (Dataset from 1 to 5). The
results are shown in Fig. 10 and Fig. 11.

Gathering all CSIs from all 20,000 packets, the distribu-
tions of CSI fingerprints at different speed in one day are
first shown in Fig. 10(a): we see huge gaps between each
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Fig. 11. CSI measurements of subcarrier #5 under ship speed of 15
km/h at 5 different test time in 3 days.

TABLE 1
Experiments on CSI variation under different speeds and different time.

Set Date Time Ship speed
1 May 3, 2018 (Day 1) 9:00 AM 15.6 km/h
2 May 3, 2018 (Day 1) 1:31 PM 21.2 km/h
3 May 3, 2018 (Day 1) 2:05 PM 6.3 km/h
4 May 3, 2018 (Day 1) 4:34 PM 9.2 km/h
5 May 3, 2018 (Day 1) 10:40 PM 26.1 km/h
6 May 4, 2018 (Day 2) 9:40 AM 15.4 km/h
7 May 4, 2018 (Day 2) 1:21 PM 15.5 km/h
8 May 5, 2018 (Day 3) 10:25 AM 15.2 km/h
9 May 5, 2018 (Day 3) 6:17 PM 15.6 km/h

distribution. The minimum, maximum, mean, and outlier
of subcarrier f = 5 data are also plotted as a box-whisker
plot shown in Fig. 10(b). To be specific, the red line presents
the mean of data, while black lines show the minimum
and maximum of each CSI with different speed. We see
unacceptable variations of fingerprints. On the contrast, we
found that the maximum and minimum values are stable
in 5 different times of 3 days in the experiments. The CSI
distribution of subcarrier f = 5 in the speed of 15 km/h is
shown in Fig. 11. The Gaussian envelope distributions and
boxplot of CSI are also plotted.

The observation is clear: the CSI at the fixed ship’s
speed exhibits different mean values and variances, but they
exhibit stable statistical structures at each subcarrier. That is,
the CSI of all subcarriers is relatively stable across different
time points when the sailing speed is fixed. This motivates
us to design a novel speed-aware CSI-based device-free
indoor localization method to achieve high accuracy in
the mobile environment. In what follows, we describe our
system in detail.

5 THE SWIM DESIGN

According to our findings, the elaborated fingerprint map is
stable during the same speed. Therefore, to solve the prob-
lem of speed’s effect, a straightforward solution is to collect
the fingerprints for each speed. Apparently, this requires a
large system downtime, and the overhead is too high to
implement. A better way to solve this issue is to find a speed
effect pattern and modify the original CSI fingerprint to
adapt to the new speed environments. In this paper, we pro-
pose SWIM, a speed-aware 3D fingerprint map generation
method to estimate the fingerprints at each speed to cover
all deformation effects of the mobile environment. Fig. 12
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presents an overview of SWIM. In the following subsections,
we will describe each step in detail.

5.1 Base Map Collection
The first step of SWIM is to collect the fingerprint map of the
area of interest when the ship is anchored. We call it a base
map. We define the general fingerprint Fl as a matrix of CSI
amplitudes of M subcarriers over all AP links measured by
N Wi-Fi packets binding with a location label l. The CSI
amplitude vector Hi can be denoted as:

Hi = [|H(f1)(i)|, |H(f2)(i)|, ..., |H(fM )(i)|]. (7)

The fingerprint Fl is denoted as:

Fl = [H
(l)
1 , H

(l)
2 , ...,H

(l)
N ]T . (8)

Unlike previous studies, our study considers the speed
factor. SWIM simultaneously collects CSI fingerprints and
speed data to obtain the joint CSI-speed fingerprints:

F k
l = {vk;Fl}, (9)

where vk is the instantaneous environmental ship’s speed
when the fingerprint Fl is measured. We can then denote
fingerprints map in all speed scenarios as the joint finger-
prints F k

l . The fingerprint base map (when the speed is 0)
is denoted as {F 0

1 , F
0
2 , ..., F

0
L}, where L is the total number

of locations of the area. In our study, the base map of the
mobile ship environment is used to estimate and construct
fingerprint maps for each speed in the environment.

5.2 Deformation Function Optimization
As discussed in Sec. 3, the ship’s deformation introduced by
varying speeds affects CSI and distorts the fingerprints from
the base map. To predict the variation of fingerprints at each
speed, a set of reference locations is selected to measure
the changes. Here, P reference locations are adopted: a
reference location p is a location that is marked in advance.
The fingerprints of location p are collected during the ship
sailing at each environment speed and are recorded as:

Rp = [F 0
p , F

1
p , F

2
p , ..., F

K
p ], (10)

where F k
p is the fingerprint of location lk at speed vk.

After obtaining fingerprints of all reference locations
at each environmental speed, the effect of ship’s deforma-
tion on the fingerprint can be denoted as the deformation
function Dk

p(·) that describes the relationship of reference
fingerprint p between speed k and speed of 0:

Dk
p = F k

p − F 0
p , (11)

where F 0
p indicates the fingerprint of location p when ship’s

speed is 0. Here, at a certain speed vk, the effect of ship’s
deformation on the fingerprint can be presented as the
difference between the two CSI-speed joint features. The
deformation effect of speed can be rewritten as a mapping
function:

F k
p = Dk

p(F 0
p ). (12)

Here, Dk
p is the deformation function that describes the

variation of fingerprints and transforms matrix F 0
p to a
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Fig. 12. SWIM overview.

new matrix F k
p . The deformation function of each speed

at calibration location p can be obtained by continuously
collecting the speed information and CSI fingerprints:

Dp = {D1
p(·), D2

p(·), ..., DK
p (·)}. (13)

To determine an appropriate form of Dk
p(·), namely

deformation function, we need to understand the nature of
the amplitude variations caused by environmental surface
deformation. As illustrated in Fig. 6, environmental surface
deformation leads to the effect that some new multipaths
appear, while certain old multipaths disappear. According
to [16], on each subcarrier frequency, the amplitude of CSI
is a combination of signal strength from all multipaths. The
new/disappeared multipaths bring a superimposed effect
or counteract the effect on all subcarriers. Therefore, for
reference location p, we can model the changing function
of the i-th subcarrier at speed k as:

|Hk(fi)| =
M∑
j=1

wi,j |H0(fj)|, (14)

where the Hk(fi) is the amplitude of the i-th subcarrier
at speed vk, H0(fj) is the amplitude of the j-th subcar-
rier when speed is 0, M represents the total number of
subcarriers, and wi,j is the weight of the j-th subcarrier
for estimating the i-th subcarrier. We can obtain F k

l by
multiplying the base map fingerprint F 0

l by the weight
matrix W = [w1, w2, ..., wM ]:

F k
p = Dk

p(F 0
p ,W ) = W · F 0

p . (15)

After modeling the calibration function, we define the
loss function of Dk

l (·) to optimize the best weight of each
Wi,j in a supervised way by using the reference fingerprints
F 0
p and F k

p . For the i-th fingerprint point, we define the loss
function using the Frobenius norm as:

Li = ||W · F 0
p − F k

p ||2F . (16)

The total loss function can be obtained by combining the
loss function for each Li. We extend the loss function with a
L2-norm regularization penalty to discourage large weights,
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Fig. 13. Speed-CSI 3-D Fingerprint Map.

by using an elementwise quadratic penalty over all weights
W :

L =
1

N

N∑
i=1

Li + λ
∑
s

∑
t

W 2
s,t, (17)

where the λ is the regularization factor. We can then calcu-
late the W by the gradient decent method [23]; we skip the
details due to limited space:

(Wopt, bopt) = arg min
(W,b)

L. (18)

5.3 3D Fingerprint Map Construction

We now present the core design of SWIM, which can ef-
ficiently construct a speed-aware 3D fingerprint map (as
illustrated in Fig. 13) using a calibration function to cover
all potential speed scenarios without the need of repeating
the site survey for each speed.

The intuition of the calibration method is that the vari-
ation of reference location fingerprint Dk

p(·) indicates a pat-
tern of fingerprint change, which covers an area within valid
range d from reference location p as shown in Fig. 14. In
other words, using deformation function Dk

p(·), fingerprint
change Sk

l (·) of location l, which is within distance d from
reference location p, can be approximated as Dk

p(·):

Dk
p(·) ∼= Sk

l (·). (19)

Based on the Sk
l (·), namely calibration function, and base

map, we can then estimate the fingerprints of all locations
at a given speed without physically updating the fingerprint
map from scratch:

F k
l = Sk

l (F 0
l ), (20)

where F 0
p indicates the fingerprint of location p when ship’s

speed is 0, and F k
p represents the fingerprint when ship’s

speed is vk. Four real-world fingerprint samples are illus-
trated in Fig. 15. The fingerprints of reference location at
speed of 0 and speed of 10 km/h are shown in Fig. 15(a),
and the fingerprints of three nearby test location (2 m, 5 m,
and 7m away) are shown in others. The calibration function
is trained by using reference fingerprints and tested by the
test location fingerprints. As can be seen in the figure, the
estimated fingerprints are fit to the ground-truth reference

Speed kSpeed 0

Reference 1

Reference 2

AP DP1

DP2DP3

AP DP1

DP2DP3

Fig. 14. Speed fingerprint estimation based on reference fingerprint.

fingerprints at speed of 10 km/h. The estimated fingerprint
of the test location also fits nicely.

To construct a speed-aware 3D fingerprint map in an effi-
cient way, we consider both the suitable valid distance of the
calibration valid range d and the sample scale of the speed
dimension vk (k = 1, 2, . . . ,K). To estimate the optimal
map parameters, we quantify the distance between two CSI
fingerprint sequences. Statistics offers us the Spearman’s
rank order correlation coefficient [24], which is a metric
to rank orders, to capture the similarity of the fingerprint
sequences. Given two CSI vectors F1 = {ui} and F2 = {vi},
1 ≤ i ≤ n, the metric is defined as the linear correlation
coefficient of the elements:

ρ = 1− 6
∑n

i=1(ui − vi)2

n(n2 − 1)
. (21)

We use the similarity of two neighbor locations finger-
prints ε to validate d and vk. In our measurements, the
similarity of estimated speed fingerprint and ground-truth
fingerprint is above ε when d < 5 m. Similarly, when the
speed margin is over 4 km/h, the similarity of fingerprints
of the same location would lower to ε and confuse with
its neighbor locations. As a result, we choose d = 5 m to
deploy the reference locations, and set K as 6. The speed
dimension vt is set as {v0 = 0, v1 = 4 km/h, . . . , vK = 24
km/h}. Together with the base fingerprint map and the
calibration function, the speed-aware 3D fingerprint map
can be constructed accordingly.

5.4 Passive Localization Module

In the previous steps, the offline phase of SWIM collected
the base map and estimated the speed-aware 3D fingerprint
map based on calibration functions. In the online phase,
the CSI and environment speed information are collected
continuously and the objects’ locations are calculated in real
time. We now introduce the passive localization module,
which contains two parts.

1) Human Detection: To localize the target in a device-free
way, a basic step is to detect the presence of a person in
the environment. We design the human detection module
to capture environmental changes because of the object’s
appearance. The system continuously monitors the CSI and
calculates the variance that can indicate the appearance of
the human object. Denote H = [|H1|, |H2|, ..., |HN |] as the
N CSIs sequence. Their corresponding covariance matrix is:

Σ(H) = [cov(|Hi|, |Hj |)]N×N , (22)
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Fig. 15. Evaluation of fingerprints calibration from speed 0 to 15 km/h.

where cov(Hi, Hj) is the covariance between vectorsHi and
Hj .

Fig. 16 shows the variances of subcarrier f = 12 when
a human is moving or is absent during the ship’s sailing.
As can be seen, the variance is significantly larger in the
former case. Motivated by this observation, we propose a
human detection method by comparing the spectral norm
(the largest singular value of the matrix) of CSI variances
with threshold σ:{

P0 : ||Σ(H)||2 ≤ σ
P1 : ||Σ(H)||2 > σ

, (23)

where P0 represents “no human is present” and P1 is
“a human is present.” Threshold σ is precalibrated and
calculated according to the calibration fingerprints measure-
ments. Once an object event has been detected, it triggers the
fingerprint matching process.

2) Position Estimation: We design a device-free finger-
prints matching method based on classification with sup-
port vector machines (SVM) [25]. SVM is a supervised
learning algorithm that uses labeled training data to create a
model that can then predict which classes the new test data
belong to, given a set of features from the test data. It has
also been used in fingerprint-based device-free localization
[26].

The SVM used here employs a radial basis function
(RBF) kernel to project data to a higher-dimensional space,
where the RBF kernel on two samples x and x′ is defined as

K(x, x′) = exp(−γ|x− x′|2), (24)

where γ is a kernel size parameter. We used the open
software tool LIBSVM [27] to train and predict the 3D fin-
gerprint map. After identifying the presence of a human in
the environment, SWIM reads the current ship’s speed data
and selects the corresponding SVM classifier to estimate the
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Fig. 16. Variance of CSI of Subcarrier 12.

locations of new fingerprints. The localization procedure is
described as Algorithm 1.

Algorithm 1 3D fingerprint map localization.
Input: A CSI sequence, H = {Hi}; A ship speed vi;
Output: A boolean variable E denoting whether human

exist; The object location L;
Parameters: A variance threshold σ; A buffer length N ; A

3D fingerprint map 3DMap = {vk : mapk};
1: if len(H) < N then
2: return ‘Not enough CSI sequence length.’;
3: end if
4: Σ = V ariance(H);
5: if Σ < σ then
6: E = False;
7: L = None;
8: else
9: E = True;

10: CurrentMap = 3DMap(vi);
11: L = SVMpredict(CurrentMap,H);
12: end if
13: return E, L;

6 EXPERIMENT AND EVALUATION

We have fully implemented and extensively evaluated
SWIM on a real-world passenger ship. We first describe our
testbeds and the data collection methodology, and then we
evaluate the performance of SWIM against state-of-the-art
device-free localization methods.

6.1 Experiment setup
1) Experimental scenarios: We implemented our experimental
testbed in “Yangtze 2” passenger ship, which was described
in Section 2. Three DPs and one AP are deployed in the area
to cover the whole area as shown in Fig. 17. We evaluated 49
locations on this ship for evaluation. The interval between
each position is 1 m, which yields a reasonable area for a
human to stand. Among these, 2 locations (with a distance
of 5 m between them) are selected as reference locations.
With these two locations as the centers, circles with a radius
of 5 m (which is the reference range in our work) can
cover the entire area. At each location, 300 packets of CSI
samples are recorded to establish the fingerprints base map.
Reference fingerprints are collected within a sailing voyage
of the ship, with 300 samples at each speed.
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Fig. 17. Fingerprint layout in hall.

2) Comparison techniques: We compare SWIM with three
other techniques described in Section 7.

• Pilot: Pilot, described in Section 2, uses the CSI
correlations of all subcarriers as fingerprints, and the
kernel density-based maximum a posteriori proba-
bility algorithm to detect and localize a target.

• PADS: PADS [17] is a state-of-the-art CSI-based mov-
ing target detection method which uses the ampli-
tude and phase information of CSI to extract sensi-
tive metrics for human detection.

• AutoFi: AutoFi [16] is a fingerprint-based localiza-
tion in a changing environment. It can automatically
calibrate the localization fingerprint database in an
unsupervised manner to adapt to the environment.

• PinLoc: PinLoc [8] focused on the fingerprint-based
localization using physical layer information in WiFi
systems. It can extract the core structure, preserving
certain properties useful for localization.

3) Evaluation metric: High accuracy of human detection is
necessary to guarantee the efficiency of device-free localiza-
tion. Thus, we consider two performance metrics: detection
accuracy and localization accuracy.

To quantify the performance of the human detection, we
use the following two metrics: true negative rate and true
positive rate. Among them, the true negative rate is the
probability that the human absence is correctly detected,
and the true positive rate is the probability that the human
presence is correctly detected. To evaluate the performance
of SWIM localization accuracy, we compare the classification
accuracies and cumulative positioning error distributions of
the methods. A testing CSI fingerprint is accurately localized
if its estimated label matches its ground-truth location. We
loop through all the testing dataset and collect the average
accuracy for each test data sample.

4) Dataset: We recruit 5 volunteers (four male and one
female; age: 21—32 years; height: 1.6—1.83 m; weight: 61—
82 kg) to perform various daily activities in the ship test
environments during five voyages. Each data record consists
of a continuous stream of activities, mixing the standing,
walking, sitting, and other daily activities with the ship’s
sensor data. These sensor data include the ship’s speed,
acceleration, angle, and altitude. We let the subjects to site
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Fig. 18. Comparison of human detection accuracy of three techniques.

survey in the experiment scenario. We install a camera to
record the ground-truth locations. When the camera records
video, the real-time CSI measurements and detection results
are updated online. Based on the recorded video and detec-
tion results, we can evaluate accuracy of human presence
detection and localization. For the reference training set,
we have 250 records (from 10 different speed of reference
location, 5 daily activities, and 5 people) and 250 × 300
samples (10 packets per second for 30 seconds).

6.2 Accuracy of Human Detection

High accuracy of anomaly detection is necessary to guaran-
tee the efficiency of device-free localization. In this section,
we evaluate whether SWIM can achieve this goal, and we
compare SWIM with the best CSI-based device-free motion
detection system PADS and Pilot.

Two methods are compared with SWIM: Pilot and PADS.
First, we depict true positive rates of systems when a human
is present in the environment. Fig. 18(a) shows the results of
five different test cases measured at different times or places.
As can be seen, the methods achieve good performances
when a human is present in the monitored area. The true
positive rates are higher than 98% in most cases. Three
systems reach equally high performance in most cases.
Among them, PADS and SWIM are more stable than Pilot.
Pilot suffers from temporal variance, as indicated by the
performance drop in case 4.

Furthermore, we present true negative rates of systems
when a human is absent from the environment. As can be
seen, PADS and Pilot systems suffer from mobile environ-
ment interference, and the true negative rates decreased,
which means more false alarms occurred. Fig. 18(b) shows
the results of five different cases measured at the same
places. PADS and Pilot systems can not only detect human
motions precisely but also are sensitive to ship movements.
In contrast, our system slightly outperforms two other sys-
tems. This validates the effectiveness of our approach for
the mobile environment.

6.3 Accuracy of Localization

So far, we have described the performance of human de-
tection in a typical ship scenario. In this part, we discuss
localization accuracy as the most important criteria. We
show the accuracies of our system and two state-of-the-
art techniques: Pilot and AutoFi in ship environment. The
accuracy is evaluated with cross-validation of the training
and testing dataset, as shown in Fig. 19. The training dataset
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is collected in the offline phase. The base map is first col-
lected when the ship is anchored. The passive fingerprints
are measured when one volunteer stands on each location.
Second, we collect the reference fingerprints and record the
ship’s speed during ship’s sailing. The training dataset is
used to 1) estimate the 3D fingerprint map, and 2) train
the SVM localization models. The testing dataset is collected
in the online phase. One volunteer stands on each location
and records the real-time CSI together with ship’s speed
data. Each testing data point consists of the CSI fingerprint
and the current speed. The testing dataset is then passed
to the trained model to generate estimated locations. These
estimated locations are compared with the ground-truth
location for evaluation.

The testing results are shown in Fig. 20. The cumulative
localization error of the approaches is plotted. It is shown
that the Pilot system performs the worst in the mobile
environment, because it is mainly designed for a static envi-
ronment. The accuracy remains under 90% if the distinction
distance is below 4 m. Only after the distinction distance
is over 7 m, the Pilot can achieve 99% accuracy, as in a
general environment. The AutoFi performs better than Pilot,
for it has a calibration module to remove the fingerprints
differences from a changing environment. However, for
its unsupervised manner, the environment changes cannot
be captured completely by its reference fingerprints of an
empty area. Here, our system achieves an accuracy of
82.85% when the distinction is 1 m, while Pilot and AutoFi
obtain accuracy of 60.52% and 71.31%, respectively. This
shows that our system outperforms Pilot and AutoFi in
terms of localization accuracy in a mobile environment.

6.4 Robustness of SWIM

As the wireless signal is sensitive to the environment, we
evaluate the robustness of our approach against setting
changes (including opening the door and window, switch-
ing on/off the light, moving the furniture around, presence
of other humans, and testing in different ship rooms). We
will detail the results in the following subsections.

1) Impact of moving the furniture location: To reveal the
impact of moving furniture, we move the sofa to different
places in the passenger room to evaluate its impact on
detection and localization accuracy. The experiment was
done under three different conditions: localization is con-
ducted while the sofa is put in the original place (baseline),
when the sofa is moved to the door side, and after mov-
ing the sofa to the LOS path. We arrange one volunteer
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Fig. 19. Collected data set.
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Fig. 21. Robustness of SWIM.

to conduct fingerprint collections and reference detection
in each of the three scenarios to evaluate the impact of
moving furniture on the system performance. The results
are shown in Fig. 21(a). Next, we evaluate the robustness
of SWIM and get the averaged results as shown in the
upper sub-figure. The result shows that when the sofa is
moved from the original place to the door side, the human
detection accuracy drops slightly from 89% to 86%, and the
localization performance drops from 92% to 77%. When the
sofa is moved to the room center which blocks the LOS
path, the detection accuracy drops significantly from 89% to
57%, and the localization drops from 92% to 59%. It means
that the system performance deteriorates under the effect of
the big furniture movements, which cause significant CSI
change because of variations in wireless signal propagation
in multipaths.

2) System evaluation in different ship scenarios: We then
conduct experiments to test the performance of SWIM built
for one ship environment in other ship scenarios. The
experiment was done under three typical scenarios: the
main hall of the passenger ship, the meeting room in the
main deck, and the dining room for all passengers. Among
them, the main hall has the largest area. The dining room
has the most tables and chairs, which results in the most
complex multipath effect. In this experiment, we use the
same parameters of SWIM tested in the main hall and repeat
the procedure described in Section 6.2 and Section 6.3. The
result is shown in the lower sub-figure of Fig. 21(a). The
detection accuracy changes from 93% in the main hall to 90%
and 82% in the meeting room and dining room, respectively;
and the localization accuracy drops from 89% in the main
hall to 85% and 80% in the meeting room and dining room,
respectively. It is obvious that all the system parameters are



12

TABLE 2
Environment changes and experiments test.

Case Environment changes
Baseline None

1 Human walking
2 Human sitting
3 Opening door
4 Turning on light

environment-dependent, and optimal performance can be
achieved by fine-tuning the parameters (calibration valid
range and ship’s speed margin) in a specific scenario. In
summary, the SWIM system is quite robust to small daily
changes in the environment. For the significant environ-
mental changes, the system performance can be ensured by
fine-tuning the model learned from the changed settings.
The result confirms that the meter-level localization system
in the ship environment works better in the low-multipath
scenario (such as the main hall) than the high-multipath
scenario (such as the dining room).

3) Impact of other factors: In this experiment, we check
how other parameters of environmental influence may in-
dependently affect the system, such as presence of other hu-
mans, light turned on/off, and opening of windows/door
in the ship. While the WiFi-based system performance may
be significantly affected by presence of other humans, we
test the robustness of SWIM under such a disturbed envi-
ronment. The test set of experiments is conducted in four
cases: 1) a moving person is walking in the monitored area;
2) two persons are sitting out of the area; 3) randomly open-
ing/closing of the door, and 4) randomly turning on/off
the light. Table 2 describes these impact factors in datasets.
For all cases, we conducted test experiments in the meeting
room during ship sailing and kept the parameters fixed. The
results of four cases are shown in Fig. 21(b) with the baseline
performance. For the last two cases, the mean localization
error achieved by three systems is basically the same as the
baseline. SWIM achieves low average localization accuracies
of 86.2% and 84.4%, respectively. It can be seen that the WiFi-
based systems are not affected by an opened/closed door in
the room, as shown in case 3. SWIM is not influenced by
the lights as well. The performance is stable when the light
is on and off in case 4. However, the system performance
varies between cases 1 and 2 because of presence of other
humans. We can observe that the performance of SWIM
slightly deteriorates to 77.6% and 78.8% when there are
humans walking/sitting in the surrounding area. Because
SWIM mainly relies on the reflection signal from human
bodies, it is sensitive to multipath effects caused by human
presence. Presence of other humans would slightly change
the WiFi propagation and mislead the fingerprint matching.
Therefore, presence of other humans has a larger influence
than the other environment parameters (such as light and
door) but still less than the influence of the ship’s speed.

6.5 Effectiveness of SWIM

We discuss the effectiveness of SWIM from the following
two aspects: system deployment cost and energy consump-
tion.

1) System deployment cost: In general, CSI fingerprints
are obtained by exploring all the locations manually. We
use the time cost of the fingerprints collection to evaluate
the deployment cost of SWIM. As described in Section
6.1, the localization area is divided into 1m × 1m grids.
Fingerprints of each grid are composed of 200 packets
CSI with 0.1 seconds for each measurement. Here, we set
a speed margin to be 3 km/h and collect fingerprints
at all the speed scenarios. Thus, the fingerprint map es-
tablishment time cost for a 10m × 10m area is at least
(102×200×0.1×8)/3600 ≈ 4.4 hours. With SWIM, the only
additional cost is the reference fingerprints collection. Thus,
the time cost is ((102 + (10/5)2) × 200 × 0.1)/3600 ≈ 0.57
hours. In summary, SWIM decreases the overall system
deployment cost by approximately 87%.

2) Energy Consumption: SWIM is designed with energy
efficiency in mind. Contrary to existing techniques which
rely on the active scanning with large power consumption,
SWIM uses only beacons from APs in a single channel. For
this, it synchronizes with the beacon schedules of these APs
and periodically wakes up to collect the CSIs. To this end,
it periodically wakes up to collect CSI from APs based on
synchronization scheduling. Then, it sends the packet of AP
channel states to a central server to perform localization.
The amount of such data traffic is low, approximately 1200
bytes per second for 2 APs, and the data upload energy
is negligible. To confirm this, we performed measurements
on Google Nexus One phones, using the Monsoon power
meter. We found that receiving data from 2 APs every 100
ms incurs an additional 5.28 mW power consumption on
average. This may be negligible compared to 1326.72 mW
on average required to stream a YouTube video.

6.6 Performance under different parameters
In this set of experiments, we evaluate SWIM under vary-
ing parameters of calibration valid range and ship’s speed
sampling.

1) Impacts of calibration valid range: Intuitively, with a
longer distance from the reference location, the performance
of the calibration function becomes worse. However, with a
short valid range, the reference fingerprint detection will re-
quire more labor to collect the data. To verify the parameter
of calibration valid range used in SWIM, we compare the
system performance at different calibration valid range. It
can be verified in Fig. 22(a), which presents the change of
localization accuracy and detection accuracy against valid
range.

The left subgraph of Fig. 22(a) shows that the location
recognition rates are higher than 80% when the reference
valid range is less than 5 m. It demonstrates that the lo-
calization rate is decreased when the range increases, since
the variation pattern of the reference location cannot cover
the entire localization area, as discussed in Section 5. The
right subgraph of Fig. 22(a) depicts the detection rate. As
the calibration range decreases, the number of reference
fingerprints to calculate the threshold σ is increasing. The
result indicates that as long as the calibration valid range is
no less than 5 m, which can be easily satisfied in reality, the
detection rate is at least 96%.

2) Impacts of ship’s speed margin: In practice, the speed
of a ship is analog value and needs to be sampled to
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Fig. 22. Relationship of accuracy with valid distance and ship speed
margin.

build the speed-axis of 3D fingerprint map. A dense speed
sampling method can achieve sensitive fingerprints and
comprehensive knowledge of changing of mobile environ-
ment. However, when two speeds of the maps are very close
to each other, it is still challenging to accurately distinguish
the slight difference between the two maps. If the speed
sampling margin is suitably chosen, it can describe location-
related information with decreased consumption of memory
and computational time. Therefore, the impacts on local-
ization performance of ship’s speed margin in SWIM are
tested by several speed sampling cases. Here, we increase
the margin of ship’s speed from 1 km/h to 6 km/h. In
Fig. 22(b), the accuracy of 3D fingerprint map of the location
under different speed margin is shown. As can be seen in
this figure, the system performs well for all the margins
which are less than 4 km/h with an average localization
error between 80% and 83%.

3) Impact of number of test packets: The test packets, col-
lected in the runtime for localization, affect the fingerprint-
based localization system performance according to Sec-
tion 2. Here we test the localization accuracy of SWIM
with different size of the test packets. Assuming that the
walking speed of a human is up to 1 m/s and the size
of location grids is 1 m, we set the DP extracts CSIs from
data packets that are transmitted by APs every 100 ms.
Therefore, for localization, we need at least 1 s inside a
grid, thereby receiving 10 beacons per AP. Fig. 23 shows
the variation of localization accuracy with the number of
received packets per AP both in ship sailing and anchored
states. With the typical size of 5 packets per AP, SWIM
achieves mean accuracy of 82% and Pilot achieves of 47%
across 50 locations in the ship main hall when the ship is
sailing. 20 packets raise them to 88% and 53%, respectively.
This is because one single reading may randomly match
with an incorrect location. With 100 test packets, we find
the SIWM accuracy is above 96%, and Pilot is less than
60%. This indicates that with the higher user mobility, or
with high rate of losing packets, SWIM can sustain a good
performance.

7 RELATED WORK

Device-free passive detection or localization have drawn
much attention in the past years. In this section, we briefly
review the most relevant research on passive motion detec-
tion in pervasive wireless environments. Then, the related
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Fig. 23. Localization accuracy with different sample numbers.

work of indoor localization in the mobile environment is
also introduced.

1) Device-free localization: Device-free approaches release
the users from the constraint of carrying devices. They
passively detect the signal distortions caused by the physical
presence of human bodies, and further infer human loca-
tions with this information.

Several RSS-based device-free localization systems have
been proposed and achieved low hardware cost for localiza-
tion. The most well-known RSS-based device-free localiza-
tion is the RTI [10], which deploys a sensor network around
the target area and uses the RSS changes to localize and
track a person. Nuzzer [28] used Wi-Fi RSSI as fingerprints
to localize a person to one of the fingerprinted locations.
RASS [29] detected whether a person enters the area of
interest, and presented a support vector regression model
to enhance system robustness. However, RSS is inherently
a coarse measurement and strong multipath makes the
problem even worse [30]. As such, RSS-based device-free
localization techniques have difficulties providing high lo-
calization accuracy in most environments.

Recently, there is a growing interest in exploring CSI for
device-free localization, for it can achieve decimeter-level
passive localization using commercial off-the-shelf WiFi
devices. Compared with RSS, CSI measurements provide
more fine-grained information on each subcarrier with both
amplitude and phase information [30]. FILA [31] is the
first attempt at leveraging CSI for indoor localization and
calculation the locations based on trilateration. PinLoc [8]
achieves a 90% localization accuracy by using CSI from
multiple subcarriers as location fingerprints. Pilot [13] uses
the CSI correlations of all subcarriers as fingerprints and the
kernel density-based MAP algorithm to detect and localize
a target. LiFS [14] leverages shadowing effect of targets near
line-of-sight of links and an accurate power fading model,
which is not the same in steel structure environment, to
estimate the target’s location. From experiments in these
works, we can conclude that frequency diversity of CSI
helps CSI-based scheme outperform the RSS-based scheme
and such advantage is obvious when more RF links are
available. However, these techniques rely on the assumption
that the environments and the locations of Wi-Fi devices
unchanged. In the mobile environment, this assumption
could be easily violated because the environment keeps
changing under different moving conditions. As a result,
the performance of these methods is limited in the mobile
environment.
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2) Dynamic environment: Because device-free localization
systems locate a person in an environment by measuring
the changes in received signal on links, the systems’ per-
formances are subject to changes in the environment (e.g.,
people, building layouts).

There are a few previous works that consider dynamic
environments. In [32], experiments are performed to quan-
tify how changes in an environment affect accuracy, through
a repetitive process of randomly moving an item in a
localization environment. RASID [33] improves the detec-
tion accuracy by analyzing the RSS features and adopting
a non-parametric technique for adapting to environmen-
tal changes. LEASE [34] employs a number of additional
stationary transmitters and receivers to obtain up-to-date
RSS values for updating the maps. LEMT [35] presents
a regression analysis based method to learn the temporal
relationship between the RSS received by reference locations
and that received by the mobile device. LeManCoR [36]
presents a location-estimation approach based on Manifold
co-Regularization, which can transfer the fingerprint map
to adapt to the new environment in the online adaptation
phase. These methods are mainly used for the RSS signal
and long-term environmental changes, which are not suit-
able to the mobile environment. The changes in the mobile
environment are instantaneously and unpredictable, which
is hard to collect enough calibration data in time to update
the fingerprint map.

Another related study is AutoFi [16], which proposes an
auto-calibration approach to collect the CSI of the empty en-
vironment after environment layout changes (open window
and moved furniture) and reconstruct the fingerprints in
online phase. The performance of AutoFi is not remarkable
in the mobile environment compared with general envi-
ronments because the mobile environment changing are
complex and slight compared with the layout changes. In
this paper, we mostly focus on constructing a fingerprint
map to fit the different speed of the mobile environment.
Moreover, our approach, as compared with AutoFi, does
not require the empty environment CSI data to calibrate the
database in the real-time online phase.

8 CONCLUSION

In this paper, we design and implement one of the first CSI-
based indoor localization system for a mobile ship environ-
ment. To the best of our knowledge, this is the first attempt
to exploit the characteristics of the mobile environment
and study the environmental influence factor of indoor
localization. We have conducted extensive experiments to
identify the main influence factor of a mobile environment
on localization and study the relationship between CSI pat-
tern variation and environmental dynamics. These findings
motivate us to design SWIM, which calibrates the finger-
prints from only a single speed scenario to multiple speed
scenarios through a signal reconstruction analysis. Real-
world implementation and evaluation show that SWIM is
able to efficiently improve localization accuracy and signifi-
cantly reduce the system deployment cost for a mobile ship
environment.
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