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WiCrew: Gait-based Crew Identification for
Cruise Ships Using Commodity WiFi

Kezhong Liu, Dashuai Pei, Shengkai Zhang, Xuming Zeng, Kai Zheng, Chunshen Li, Mozi Chen

Abstract—Security check-in life-support areas, e.g., bridge,
engine room, is crucial for cruise ships due to numerous and
diverse passenger identities. Instead of conventional security
check approaches, such as facial recognition and fingerprint
identification, device-free approaches enabled by WiFi-based gait
recognition have attracted considerable attention owing to their
low cost, non-intrusiveness, and privacy protection. Despite the
excellent performance of existing indoor methods, they cannot
be trivially extended to cruise ships because of the unique
characteristics of hull deformation caused by vibrating engines
and waves. This stems from the flexible structure of cruise
ships, which introduces additional noise to the WiFi signals.
To address this challenge, we propose WiCrew, a device-free
gait recognition system that detects crew identity anomalies in
cruise ships. WiCrew consists of two components: 1) a spatial
separation algorithm that separates the signal components from
ship vibration and human activity; 2) a speed-independent
adversarial learning framework that identifies the ship’s crew
using human gaits at an arbitrary walking speed. Extensive
experiments on a cruise ship demonstrate the effectiveness of
WiCrew. While the crew members walk at speed of 0.7 to 1.8
m/s, the average recognition accuracy reaches 82%, which is
similar to vision-based approaches.

Index Terms—WiFi signals, Gait recognition, Cruise ship,
device-free sensing.

I. INTRODUCTION

SECURITY check is crucial in cruise ships due to their
long journey with the complicated identities of tourists

[1]. In particular, the bridge, engine room, and cargo hold of a
ship are related to life support and property protection. Recent
studies (e.g., [2] [3] [4]) have shown that fatal accidents may
lack identity recognition systems in cruise ships. Thus, it is
desirable to identify crew members in these sensitive areas
during the day and night periods.

Internet of Things (IoT)-based identity authentication tech-
nologies have gained considerable attention in industry
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Fig. 1: Our proposed WiCrew uses commercial Off-The-
Shelf (COTS) WiFi devices deployed on the cruise ship to
implement gait-based crew identification.

and academia due to their low cost and ease of deploy-
ment [5] [6] [7]. They use biological information such as
fingerprints, eyes, and facial features to authorize access to
sensitive areas. Nevertheless, such biological information can
either be intrusive or compromise privacy [8] [9]. Thus,
researchers propose device-free sensing systems using radio
frequency (RF) signals to provide non-intrusive and privacy-
preserving identity authentication services [10]. Specifically,
they take the pattern of gaits as fingerprints to identify humans.

RF-based gait recognition technology captures gait through
radio frequency signals reflected by the human body, which
can work effectively under non-line-of-sight (NLoS) con-
ditions and is unaffected by light conditions. Typically,
RF-based gait recognition using RFID [11] [12], mmWave
radar [13] [14], and WiFi [15] [16] has gained considerable
attention in academia. Among them, WiFi is the most promis-
ing candidate for cruise ships because the existing onboard
WiFi APs are available for gait recognition.

Unfortunately, the existing WiFi-based gait recognition
cannot be trivially extended to work on cruise ships. The
unique environmental characteristic of ships is hull vibra-
tion [17] [18] [19], which severely distorts WiFi signals,
making it much more difficult to extract human reflections.
Therefore, the gait signals are distorted, resulting in inaccurate
gait recognition results. In addition, current WiFi-based gait
recognition [20] [21] assumes that the walking speed of the
target is consistent in the training and testing stages. However,
crews and passengers often change walking speed due to their
health status, mood, load-bearing status, and other factors
leading to a deviation between the source and target domains.
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At the same time, most of the gait parameters, such as gait
cycle and step length, are speed-dependent [22] [23], and the
change in speed leads to changes in these parameters.

In this study, we propose WiCrew, which uses commercial
COTS WiFi devices deployed on a cruise ship to capture
fine-grained gait features so that we can recognize the crew’s
identity, as shown in Figure 1. Three key characteristics of
the WiCrew make it a reliable solution for passive crew
identification. First, WiCrew can automatically detect the
walking behavior of the crew and implement a gait-based crew
identification. Second, WiCrew can overcome the WiFi signal
interference from the hull vibration by performing a spatial
signal decomposition algorithm. Third, WiCrew is immune
to changes in the crew’s walking speed by extracting speed-
independent gait features.

To realize WiCrew, we overcome two critical challenges.
First, the direct use of channel frequency response (CFR),
collected in the ship room, in gait recognition is challenging
because hull vibration severely distorts the WiFi signals. Sec-
ond, most of the gait parameters, such as step size, gait cycle
time, and stride frequency, are speed-dependent, which results
in the low robustness of existing gait-based identification
techniques when the target speed changes.

To tackle the challenges mentioned above, we first propose a
frequency band energy threshold-based walking activity deter-
mination and segmentation method to automatically determine
whether a crew member is walking in the background and
extract signal segments containing walking activity. Second,
we model the separation hull vibration and crew’s walking ac-
tivity as blind source separation (BSS) problems and propose
a vibration-activity separation algorithm based on empirical
mode decomposition [24] and independent component analy-
sis [25] (EMD-ICA). Third, we propose a speed-independent
and identity-discriminable gait feature extraction method based
on a domain adversarial neural network and use these features
for identity recognition.

In summary, we make the following contributions.
• We propose a crew walking activity detection method,

which can automatically detect crew’s walking behavior
and extract signal fragments containing walking activity.

• We propose a vibration-activity separation algorithm that
can separate hull vibrations from crew walking activities.

• To extract speed-independent gait features, we propose
a gait recognition model based on a domain adversarial
neural network (DANN).

The remainder of this paper is organized as follows. Related
studies on traditional gait recognition and WiFi-based gait
recognition are reviewed in section 2. In section 3 intro-
duces preliminary observations. Section 4 introduces the sys-
tem overview and the system design about vibration-activity
separation and speed-independent gait recognition model in
sections 5 and 6. Section 7 describes the experimental setup
and evaluation. Finally, we conclude the paper in section 8.

II. RELATED WORK

Our work focuses on identifying people by detecting gait
patterns, which is divided into traditional gait recognition and
WiFi-based gait recognition.

A. Traditional Gait Recognition

There are three basic types of sensors used in conventional
gait identification technology: cameras, wearable sensors (such
as pedometers), and floor sensors. At present, camera-based
gait recognition technology achieves high recognition ac-
curacy. Lee et al [26]. proposed a gait recognition model
based on ellipse parameters, which divides the human body
into seven ellipses, and calculates the parameter changes of
the seven ellipses during the human movement process to
construct a gait representation. Another classic solution is to
crop the silhouettes of persons in the video frame by frame and
then stack them up to generate a gait energy map (GEI) [27].
Nonetheless, this method requires enough lighting and line-
of-sight (LoS) path. Moreover, they often cause privacy issues
among users [28] [29] [30]. WiCrew, on the other hand, is
independent of illumination conditions and can function in
dark areas. Moreover, they do not capture target images and
can protect privacy more effectively. Wearable sensor-based
gait recognition techniques require the target to wear sensors
such as IMU and gyroscopes all the time to extract acceleration
or rotation variance during walking. However, this method
requires users to wear it for a long time, which may cause
discomfort [31] [32] [33]. The WiCrew system is a device-
free passive gait recognition system that does not require the
user to wear a device. Floor sensor-based gait recognition
technology utilizes sensors installed under the floor, such as
pressure sensors, to capture gait characteristics, such as plantar
pressure distribution [34]. However, this approach is complex
to deploy and is implemented only in specialized areas. By
leveraging existing WiFi APs, the WiCrew solution reduces
installation costs and complexity.

B. WiFi-based Gait Recognition

In recent years, WiFi-based gait recognition technology
has attracted considerable attention in intelligent furniture,
intrusion detection, and other fields. WiWho [20] system
extracts CSI signals in the 0.3-2 Hz band, which analyzes gait
parameters such as the gait cycle and the number of steps.
WiFiU [21] uses principal component analysis and spectral
subtraction to obtain high-quality spectrograms from which
gait cycles and more than 170 other features can be extracted
to identify people. WiFi-ID [35] extracts features within the
20-80 Hz frequency band and uses a sparse approximate
classifier to identify identities. AGait [36] considered that
previous work required subjects to have fixed walking path
and direction and tried to use two WiFi links to obtain gait
features independent of path and direction, and used them to
identify people. GaitSense [37] extracted the gait pattern from
six WiFi links and eliminated irrelevant disturbances using a
normalization algorithm. GaitFi [38] proposes an innovative
multimodal gait recognition method that uses WiFi signals
and videos for human identification. MetaGanFi [39] pro-
poses a domain-agnostic meta learning model, DA-Meta that
could quickly adapt from one/few data samples to accurately
recognize unseen individuals. However, the aforementioned
static environment-based solutions degrade dramatically when
deployed directly on a ship due to the ship’s unique environ-
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ment. Our solution was built specifically for a dynamic ship
environment and is able to effectively reduce noise from ship
vibrations.

III. PRELIMINARY AND OBSERVATION

In this section, we first provide preliminary knowledge
about the CFR power model. Next, we present three obser-
vations: walking activity affects CFR, hull vibration affects
CFR, and walking speed affects gait shape description.

A. CFR Power Model

The CFR power model describes the influence of human
motion on a WiFi signal in a static environment [21]. WiFi
signal from the sender can directly travel through the line-
of-sight (LoS) path or be reflected off the wall and the
walking human, and propagate through multiple paths before
arriving at the receiver. This phenomenon is known as the
multipath effect. If a WiFi signal arrives at the receiver through
N different paths, then H(f, t) is given by the following
equation:

H(f, t) = e−j2π∆ft
N∑

k=1

ak(f, t)e
−j2πfτk(t), (1)

where ak(f, t) is the complex-valued representation of the
attenuation and initial phase offset of the kth path, e−j2πfτk(t)

is the phase shift on the kth path with a propagation delay of
τk(t), and e−j2π∆ft is the phase shift caused by the carrier
frequency difference ∆f between the sender and the receiver.

The CFR power model divides multipaths into static (re-
flected on stationary objects and LoS paths) and dynamic paths
(reflected from walking targets). The dynamic path changes
as users move and is the sum of the CFRs of all those paths
that arrive at the receiver after reflecting from the moving
body parts of the users. The static path is not affected by
the movement of any user and is the sum of the CFRs of all
those paths that arrive at the receiver without reflecting from
any moving body parts. If there exist Nd dynamic and static
paths are denotes by Hs(f), the CFR H(f, t) can be roughly
expressed as

H(f, t) = e−j2π∆ft

(
Hs(f) +

∑
k∈Nd

ak(f, t)e
−j

2πdk(t)

λ

)
,

(2)
Let vk represent the rate at which the length of the kth path

changes. The length dk(t) of the kth dynamic path at time t
is expressed as dk(t) = dk(0) + vkt. The instantaneous CFR
power at time t can be derived as follows

|H(f, t)|2 =
∑

k∈Nd

2
∣∣Hs(f)ak(f, t)

∣∣ cos( 2πvkt

λ
+

2πdk(0)

λ
+ ϕsk

)

+
∑

k,l∈Nd

2
∣∣ak(f, t)al(f, t)

∣∣ cos( 2π
(
vk − vl

)
t

λ
+

2π
(
dk(0) − dl(0)

)
λ

+ ϕkl

)

+
∑

k∈Nd

∣∣ak(f, t)
∣∣2 + |Hs(f)|2 ,

(3)
where 2πdk(0)

λ +ϕsk and 2π(dk(0)−dl(0))
λ +ϕkl are constants

that represent the initial phase offsets for the different paths.
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Fig. 2: The CFR power spectrogram of human walking.

Eq.(3) indicates that the total CFR power is the sum of a
constant offset and a set of sinusoids, where the frequencies
of the sinusoids are functions of the rate of path length
changes. Next, we present three valuable insights from Eq.(3),
and describe how this useful information guide the design of
removing the ship vibration of WiCrew.

B. Experiments and Observations

In this section, we describe some experiments and observa-
tions that illustrate the practical challenges encountered when
implementing WiCrew.

1) Observations 1: Different individuals’ gaits produce
unique patterns in the aggregate CFR power.

According to the CFR power model, when a stationary
target starts walking, the movement of the target introduces
new frequency components into the CFR power. Similarly, a
few CFR power frequency components disappear when the
target stops walking, as shown in Figure 2. This phenomenon
indicates that the start and end of user’s walking behavior can
be determined by the energy of the corresponding frequency
component in the CFR power. Specifically, when a person
begins and stops walking, the energy in the frequency band of
30-50 Hz of the CFR power is always changed. The reason for
not choosing the 0-30 Hz range is that the CFR power change
due to human in-place activities tends to be below 30 Hz.

However, during human walking, the speed of each part
of the body is different (e.g., the hand moves faster than the
trunk), so the path change speed of the WiFi signal reflected
by each part is different. As shown in Figure 2, we observed
a high energy (”hot” colored) band, which corresponds to
torso reflection. There are several low-energy bands around the
torso reflection, which is an arm or leg reflection. This shows
that because different people’s gaits involve movements of
body parts at different speeds, each individual’s gait produces
a unique pattern in the aggregate CFR power. By learning
this unique pattern, the WiCrew system can achieve a gait
recognition task.

2) Observations 2: Ship vibrations while sailing can
severely distort WiFi signals.

Due to external stresses such as loads, waves, and engines, a
ship vibrates continuously when sailing. The CFR power value
of a ship’s indoor environment has characteristics distinct from
those of land due to ship vibration. At various phases of
sailing, the hull vibrates at varying intensities. For instance,
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Fig. 3: CFR profiles of real-world cruise ships in three different
phases.

when a ship is anchored, the hull vibrates with a tiny amplitude
due to wave action. When the ship cruises at a constant speed,
the hull is subjected to the combined action of waves, loads,
and engines, and the vibrations are noticeable. As when the
ship accelerates, hull vibrations increase.

In order to further illustrate the influence of hull vibration
on the CFR value, we conducted experiments in the real-world
ship environment, and the study setup is shown in Figure 3(a).
We collected CFR signals in the ship environment in three
phases: anchoring, speed up, and constant speed, ensuring no
interference from other factors during the entire experiment. It
can be seen in Figure 3(b) that the CFR value remains constant
while the ship is anchored. Gait recognition using WiFi is now
quite accurate. The ship then began accelerating away from
the dock, at which point the CFR power fluctuated wildly
with the motion of the ship. This demonstrates that the hull’s
vibrations vary depending on the sailing phase. At a certain
point, the ship stabilized at a constant speed, and the CFR
power variations decreased and stabilized.

3) Observations 3: Gait shape description can be signifi-
cantly affected by the change of walking speed.

Most gait-based identification systems can be very reliable
if the user walks at the same speed all the time. However,
the variation of walking speed will significantly affect the
description of gait shape. For example, if you walk slowly,
your stride length and gait cycle may get shorter. Also, the
difference in walking speed between the training set and
the test set makes the source domain and the target domain
different. Because of this, a gait recognition model that was
trained for a certain walking speed is usually not good at
predicting gait samples at any walking speed.

We used real-world experimental data to show that different
walking speeds result in distinct gait shape descriptions. First,
we fixed the smartbands on the person’s ankle and collected
the X-axis acceleration sensor data when the person was
walking. The experimental setup is illustrated in Figure 4(a).
Next, we show the gait shape descriptions of different people
within the same walking speed range in Figure 4(b). It can

(a) Experiment setting (b) Different person

(c) Different speed

Fig. 4: Walking speed affects gait shape description

be seen that the gait shape descriptions of different people
are very different, which indicates that gait information can
be used to distinguish a person’s identity. Finally, we show
the gait shape description of the same person at different
walking speed ranges, as shown in Figure 4(c). Apparently,
the gait shape description changes with the speed change but
still maintains a considerable similarity, which indicates that
the speed can significantly affect the gait shape. However, the
speed-independent gait features still do not change with speed.

IV. SYSTEM OVERVIEW

Our research aims to implement a speed-independent gait
recognition system for the dynamic environment of a ship.
WiCrew consists of three main components: data collection
and preprocessing, vibration-activity separation technology,
and a DANN-based speed-independent gait recognition model,
as shown in Figure 5.

• Data Collection and Pre-processing. WiCrew collects
CSI measurements on the receiving end of a WiFi link
between two WiFi devices, and calculates CFR power.
To reduce data redundancy and irrelevant noise between
subcarriers, principal component analysis (PCA) is used
to pre-process CFR power.

• Vibration-activity Separation. To automatically detect
and segment walking activity in CFR power, we pro-
posed a walking activity determination and segmentation
method based on frequency band threshold. We intro-
duced a vibration-activity separation algorithm based on
the captured walking activity signal fragments to remove
the ship vibration components.

• Speed-independent Gait Recognition Model. Finally,
to extract speed-independent and identity-discriminable
gait features and realize gait-based crew identification, we
first normalized the input data with data format converter,
and then completed crew identity recognition with speed-
independent gait recognition model based on DANN.

V. VIBRATION-ACTIVITY SEPARATION

This section describes the separation of human walking
activity from hull vibrations. First, we preprocessed the col-
lected CFR signals. Second, the signal fragments containing
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Fig. 5: System overview.

the walking activity were extracted. Finally, we proposed a
vibration-activity separation algorithm to complete the vibra-
tion activity separation process.

A. CSI Collection and Pre-processing

In this section, we first collect CSI measurements from WiFi
signals using commercial WiFi devices. Using the CSI tool,
we collected CSI measurements from 30 OFDM subcarriers
between each transmitting and receiving antenna pair. Thus,
we obtained 1 × 3 × 30 = 90 CSI values for each received
802.11n frame when the sender has one antenna, and the
receiver has three antennas. Because our system sends 1,000
WiFi frames per second, we collected 1,000 CSI values for
each of the 90 CSI streams in one second. Each subcarrier
CSI value of a sequence for a given transmit/receive antenna
is called a CSI stream.

Next, we considered the raw CSI stream as the input and
convert each CFR value in each stream to CFR power by
multiplying it by its complex conjugate. Furthermore, we
removed the constant offset caused by the static reflection
path from the CFR power stream. A constant offset can be
obtained by calculating the background CFR power in a long-
term static environment. We used the PCA method to extract
the first principal component from correlated CSI measure-
ments to reduce irrelevant noise in different subcarriers [40].
Specifically, we cut the CFR power stream with a constant
offset removed into chunks, and the size of each chunk had a
sampling interval of 1-s. The PCA algorithm was applied to
each chunk to obtain the principal components of the stream.
The reason for choosing one 1-s as the block length is that
the number of samples was large enough to ensure accurate
correlation estimation, and the short time interval ensures the
real-time performance of the system. For ease of writing and
understanding, we refer to the processed data stream as CSI
power stream.

Signal 
Fragments
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by EMD

Selected
IMFs 

ICA and Selected ICs

Hull vibration signal Walk activity signal

IMF 1

IMF 2

IMF n

IMF 3

...

Fig. 6: Vibration-activity separation algorithm based on EMD-
ICA.

B. Walking Determination and Segmentation

Before separating human walking activities from the vibrat-
ing ambient noise, WiCrew first determines whether people
walk in an environment of interest and extracts signal frag-
ments containing walking activity. However, ship vibrations
cause CSI fluctuations, which will overwhelm the movement
of people far away from the WiFi link. This means that
traditional methods for figuring out walking activity based on
variance won’t work. So, we propose a method for figuring
out and separating walking activities that is strong enough for
ship sailing scenarios.

We propose a frequency-band energy-threshold walking-
activity detection technology. Specifically, we detected sig-
nal energy of CSI power stream in the frequency range of
30∼50 Hz as the basis for determining walking activities. This
is because, when a person’s walking speed is between 0.8 and
1.5 m/s, the fluctuation of the CFR power frequency under the
5180 MHz WiFi channel (carrier wavelength = 0.0579 meters)
is between 30 and 50 Hz. When the detected energy was
greater than the threshold, the walking activity starts, and
the walking activity ends when the energy drops below the
threshold. Detailed steps are presented in Algorithm1.

C. Vibration-activity Separation Algorithm

This section shows that separating the hull vibration signal
from the walking activity signal can be modeled as a blind
source separation (BSS) problem. Because we only used a pair
of WiFi devices to measure the CSI, our problem is known as
the single-channel blind Source separation problem (SCBSS).
To solve the SCBSS problem, empirical mode decomposition
(EMD) decomposes the signal and constructs multiple virtual
observation channels. We can then use independent component
analysis (ICA) to solve the BSS problem and remove hull
vibration noise. The vibration-activity separation algorithm is
shown in Figure 6.

ICA requirements. Assuming that all the sources are
independent, non-Gaussian, and linearly combined, the BSS
problem can be solved using ICA. To test this hypothesis,
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Algorithm 1 Frequency-band Energy Based Walking Activity
Determination and Segmentation.

Input:
Read input current signals xcur;

Output:
Signal fragments containing walking activity xwalk;

1: Defined operating parameters such as window size (n),
window type (w[n]), hopping size (H), sampling rate (fs),
threshold (T )

2: Define variables and initialize them such as frame time
(tf = 0), frame energy (E[tf ] = 0), i = 0, Duration[i] =
0, Start = 0,End = 0;

3: Input signal xcur is filtered by Buttertworth bandpass filter
with passband frequency of 30∼50Hz;

4: while (n+H) ≤ total of Input signal xsig do
5: x← xcur[1 : n]. ∗ w[n];
6: frametime← frametime+ n/fs;
7: E[tf ]← E[tf ] + x. ∗ x;
8: if E[tf ] ≥ T then
9: Duration[i] = tf ;

10: end
11: if E[tf ] ≤ T then
12: Start = Duration[0]× n/fs;
13: End = Duration[−1]× n/fs;

14: end
15: if End− Strat ≤ 5 then
16: End = 0, Start = 0;
17: else
18: xwalk ← xcur[Start : End];

19: end
20: x← xcur[1 +H : n+H];
21: i = i+ 1;
22: Go back step 4
23: end while

we first examined the independence of possible sources (hull
vibration and human walking activity). Similarly, experiments
were conducted in a real-world ship environment. We collected
CSI signals of human walking activities in the ship anchoring
state and CSI signals of the no-person environment in the ship
sailing state. Next, we calculated the correlation between the
CSI signals of the two groups. Figure 7 shows the correlation
between walking activity and hull vibration, and it is evident
that the correlation is less than 0.3. Thus, we conclude
that human activity and hull vibrations are independent. To
demonstrate the non-Gaussian nature of the source, we show
the CSI power distributions for hull vibration and walking
activity, in Figure 8. We can observe that these distributions
are nonGaussian. We have demonstrated this earlier using the
CSI power model to determine whether the combination of
sources is linear. Therefore, ICA can be applied to CSI power
data to separate hull vibration and walking activity.

The Separation Model. The SCBSS is an extremely under-
determined condition of blind source separation (BSS), which
can describe an observation signal instantaneously mixed by
several unknown source signals passing through an anonymous
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Fig. 7: Correlation between hull vibration and human walk
activity.
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Fig. 8: Illustration of non-gaussian distributions of the hull
vibration and human walk activity.

channel transmission matrix.

y(t) =

N∑
i=1

Cxi(t), (4)

where xi(t) = [x1(t), x2(t), . . . , xM (t)]
T denotes the un-

known source signal, y(t) denotes the observed mixed signal,
C denotes the unknown channel matrix, and N denotes the
number of source signals.

The traditional blind source separation (BSS) problem is
solved by ICA, which needs the number of observed signal
channels to be greater than the number of source signals.
This means that ICA can’t directly solve the SCBSS problem.
One way to solve the problem of SCBSS is to decompose
the observation signal appropriately to construct multiple
virtual observation channels and then extract the independent
principal components through ICA. Because the CSI signal is
a typical nonstationary signal, EMD decomposes the observed
signal and constructs multiple observation channels. Here are
the steps in more detail.

1) Signal Decomposition Based on EMD: In this section,
we first decompose the signal to build a virtual observation
channel. Based on the basic assumption that any signal is
composed of several IMFs, EMD can decompose the original
signal into high- and low-frequency IMFs. Thus, the original
signal x(t) can be written as:

x(t) =

n∑
i=1

ci(t) + rn(t), (5)

where ci(t) represents the IMF and rn(t) represents the
residual component.

2) IMFs Selection Based on Correlation: Among the IMF
obtained through EMD, low-frequency IMFs are producing to
false modal components. High-frequency IMFs are prone to
noise-dominated modal components, which can harm subse-
quent feature extraction. Therefore, adopting effective methods
to screen for extracted IMF is necessary. This study adopted
a correlation coefficient to measure the similarity between the
IMF and the original signal. An IMF with low similarity is
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Fig. 9: The comparison between before and after removal of
hull vibration

discarded by empirically setting the threshold. The correlation
coefficients of x(n) and y(n) sequences are calculated using
the following formula.

ρxy =

∑∞
n=0 x(n)y(n)√∑∞

n=0 x
2(n)

∑∞
n=0 y

2(n)
, (6)

3) Independent Components Analysis by FastICA: The pur-
pose of ICA is to decompose mixed signals into independent
subcomponents. The solving model of ICA is

Ŝ = Wy(t) = WCx(t), (7)

where Ŝ is an estimate of x(t), W = Ĉ−1 is the decomposition
matrix, and is an approximation of the inverse of the channel-
mixture matrix C. FastICA is an improved ICA algorithm
with a faster convergence speed and no step-size parameter.
This study used the FastICA algorithm to extract independent
principal components from multiple IMFs.

Finally, using the vibration-activity separation algorithm
based on EMD-ICA, we removed the hull vibration from
the CFR power, as shown in Figure 9. Evidently, after using
the vibration-activity separation algorithm, the hull vibration
component is removed and the walking activity component is
retained.

VI. SPEED-INDEPENDENT GAIT RECOGNITION BASED ON
DOMAIN ADVERSARIAL NEURAL NETWORK

The proposed speed-independent gait recognition model
based on domain adversarial training comprises four parts:
data format converter, feature extractor, identity recognizer,
and domain discriminator. An overview of the model is
shown in Figure 10. As mentioned above, the goal of the
proposed model is to capture a speed-independent and identity-
discriminative feature representation from a signal fragment
containing a walking activity.

To achieve this goal, we first designed a data format
converter to convert one-dimensional data of different lengths
into two-dimensional matrices of the same size as the input
data format to improve the feature expression ability. Then,
the feature extractor based on CNN converts the input image
into a latent representation, maximizes the accuracy of identity
prediction using the identity recognizer, and obtains the
predicted identity. The domain discriminator is used to max-
imize the recognition accuracy of the domain (specifically, to
identify the walking speed of the target as it walks); however,

our design goal is to learn domain-independent features, which
seems to create a contradiction. Therefore, in our design, using
the gradient reversal layer, the feature extractor attempts to
deceive the domain discriminator and improve the prediction
accuracy of the identifier. The feature extractor can learn
speed-independent and identity-discriminative features using
this minimax game. The details of our neural network model
are discussed in this section.

A. Data Format Convertor

Because of the different gait cycles of each person, the time
required to walk on a specific path is different; therefore, the
length of the extracted signal fragments containing walking
activities is different. To unify the data format, we first need
to unify all signal fragments to the same length. We define the
gait signal fragments Z as

Z = [z(1), z(2), . . . , z(i), . . . , z(o)] , Z ∈ Ro. (8)

Here, o is the length of each input Z. As the time durations of
the walking activities are different, the lengths o for different
inputs Z are different. To unify the data length, we chose
the maximum size of all signal fragments as the reference:
olength = olongest. We pad data shorter than olongest with
zeros at the end.

Furthermore, to facilitate the use of CNN to extract fea-
tures, one-dimensional data must be converted into a two-
dimensional matrix. Considering that the time-frequency di-
agram contains motion characteristics of each part of the
human body, we use the short-time Fourier transform (STFT)
to transform the signal into a two-dimensional time-frequency
image to enhance the feature expression ability. By setting
the window function g(x), window length windows size,
overlapping length overlap size of two adjacent windows,
and length fft size of the FFT, we can convert the original
signal Z into a time-frequency graph Xm×n using the follow-
ing formula:

X(m,n) =

∞∑
k=−∞

Z(k)g∗(kT −mT )e−jπ(nF )k, (9)

m =
length(Z(k))− windows size

windows size− overlap size
, (10)

n =
fft size

length(Z(k))
+ 1, (11)

Compared with the original signal, the generated two-
dimensional time-frequency graph has a relationship between
each value and the adjacent value and contains more details
of human movement.

We let the time-frequency image Xi(m,n) be the input data
of the proposed model. Each labeled data Xi(m,n) has both
identity label yi ∈ Y and domain label di ∈ D, where Y and
D are the identity set and walking speed set of all subjects.
We call labeled data the source domain and unlabeled data
the target domain. Therefore, in the training phase, the input
of our model is a 2D time-frequency graph X(m,n), identity
label y, and domain label d.
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Fig. 10: Overview of domain adversarial learning based gait recognition model

B. Feature Extractor

We employed CNNs to extract identity features, which are
widely used in human identification tasks. First, the feature
extractor Gf built on the CNN transforms the input time-
frequency graph into a D-dimensional latent feature repre-
sentation f ∈ RD. We assumed that all parameters of the
feature extractor are θf . For a given input X , we can extract
the potential feature vector f as follows:

f = Gf (X; θf ) , (12)

Specifically, we use 3-layer stacked CNN to extract the
features. In each layer of the CNNs, a 2D convolution kernel
is first used to calculate 2D feature graphs representing the
unique identities of different users. Next, the batch normal
layer was used to normalize the mean and variance of the data
for each layer. Finally, a rectified linear unit (ReLU) was used
to introduce nonlinearity and a max-pooling layer to reduce
the size of the representation.

C. Identity Recognizer

Based on the feature representation f output by the feature
extractor, the identity recognizer uses two full connection
layers followed by an activation function to learn the repre-
sentation Zi of the latent space of the input data X as follows:

Zi = Softplus (Wf fi + bf ) , (13)

where Wf and bf are the parameters to be learned and,
Softplus is an activation function used to introduce nonlinear-
ity. To predict the identity labels, we need to map the feature
representation Zi to a new latent space RC . Where C denotes
the number of identity labels. In addition, an Softmax layer
was used to predict user identities. Given the input feature
representation Zi, the mapping function is defined as

ŷi = Softmax (WzZi + bz) , (14)

where Wz and bz are the parameters to be learned and ŷi
represents the probability obtained by the model’s prediction
of the label to which the data belongs. We use the cross-
entropy function to calculate the loss between the predicted
and true values, as follows:

La = − 1

|K|

|K|∑
k=1

|C|∑
c=1

ykc log (ŷkc) , (15)

where |K| is the number of labeled data and ykc is the one-
hot vector of the true identity labels. In the training process,
by minimizing the loss La, the model can learn the identity-
discriminative features and obtain good identity prediction
accuracy.

D. Domain Discriminator

In our adversarial network model, the domain refers to the
walking speed of the target. The reasons behind this definition
are as follows: In actual scenarios, people tend to change
their walking speed actively or passively, and the reasons
for changing their walking speed may include weight-bearing
state, health state, emotional state, etc. However, the existing
wireless sensing technology is based on the Doppler effect.
This means that the signal received by the receiver is very
sensitive to changes in the speed of the target. When the
walking speeds of the training set and the test set don’t match
up, the accuracy of the model’s predictions falls down by a
great deal.

For our domain discriminator to be able to predict the
domain label of the input data, we similarly use two full
connection layers followed by an activation function. The
feature vector f ∈ RD is extracted by the feature extractor
Gf to the distribution D of the domain label, as follows:

Ui = Softplus (Wufi + bu) , (16)

d̂i = Softmax (WdUi + bd) , (17)
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(a) CSI collection in land (b) CSI collection in ship

Fig. 11: Experiments scenes in land and ship.

TABLE I: Characteristics of the 10 targets
Target T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
Height(m) 1.72 1.65 1.70 1.76 1.68 1.87 1.80 1.74 1.73 1.78
Weight(kg) 62 46 68 80 57 76 78 64 61 85
Gender M F M M F M M M M M
Age 24 23 24 31 21 21 27 26 24 26

where Wu, bu, Wd, bd are the parameters, and Ui is the
representation of the feature vector fi in the latent space. In
order for the domain discriminator to predict the domain label
of the input data, we used the cross-entropy function as the
loss between the true domain label and the predicted label, as
follows:

Ld = − 1

|K|

|K|∑
k=1

|D|∑
s=1

dks log
(
d̂ks

)
, (18)

where dks is the one-hot vector of true domain labels. Our
design goal was to make the model eventually learn domain
independent features; therefore, we introduced a gradient in-
version layer between the feature extractor and the domain
discriminator to minimize the prediction accuracy of the
domain labels. In summary, the loss function of the proposed
model is expressed as follows:

L = La − λLd(λ > 0), (19)

where −λ is the gradient inversion layer, and λ is a hyperpa-
rameter.

VII. EXPERIMENTS AND EVALUATION

A. Experimental Setup and Methodology

Devices: We used a pair of transmitters and receivers to
capture a WiFi signal that contains gait information reflected
by the human body. Specifically, we used two identical mini-
PCs equipped with an Intel i5 CPU, 2-GB RAM, and Intel
5300 WiFi network cards. We installed Ubuntu 12.04, and
csitool [41] on the PC set the operating band to 5 GHz, channel
bandwidth to 20 MHz, and the packet sending frequency to
1000 packets/s. The transmitting end uses one antenna, and the
receiving end uses three antennas, resulting in 30×1×3 = 90
CSI data for each packet. After data collection, we used Python
and PyTorch to prototype WiCrew on a desktop with an Nvidia
GTX2080Ti GPU card, Intel I5 2.5 GHz CPU card, and 32 GB
RAM.

Data Collection: We conducted experiments in two scenar-
ios, namely the conventional indoor corridor and the large full-
mission Navigation simulation control laboratory, as shown in

Figure 11. The Navigation Simulation and Control Laboratory,
have a 6-DOF ship motion simulation platform, which can
simulate the navigation state of ships under different levels of
wind and waves and can be used to simulate ship vibrations of
different degrees in our experiments. Our system deployment
scenarios were exit passageway in key ship areas, such as
bridge and engine room. Large- and medium-sized cruise ships
typically have no more than ten people on duty in the cockpit
and cabin, so we collected gait information from 10 volunteers
and characteristics of 10 targets in Table I. Each volunteer
was asked to walk along a vertical bisector of the LOS
path at ”fast” and ”slow.” Considering that normal people’s
comfortable walking speed is 1-1.5 m/s, we set the interval
of ”fast” and ”slow” walking speed as 0.7-1 m/s and 1.5-
1.8 m/s, respectively. We set the walking path length to 5 m,
the distance between the transmitter and receiver to 1.6 m, and
the antenna height as 0.85 m. Each target walked 20 times
in the two environments at two speeds. Simultaneously, we
conducted tests under five different vibration levels. Therefore,
we finally collected 10 × 2 × 2 × 20 + 10 × 5 × 20 = 1800
pieces of data.

Baseline Method: To evaluate the performance of our
system extensively, we first implemented four state-of-the-art
technologies, namely WiWho, WiFiU, WiFi-ID, and AGait.
Considering that the preset path of the WiWho system was
parallel to the LOS path, the relevant original settings in
this study were used to evaluate its performance. The AGait
system can identify the direction of the target using two
WiFi links. Considering that our deployment scenario does
not require identification of travel direction, we implemented
AGait using only one WiFi link to achieve its identification
capability. To evaluate the ability of the system to extract
domain-independent features, we implemented a CNN-based
gait recognition model containing only feature extractors and
identifiers, which is equivalent to removing domain adaptation
in WiCrew. The model design details are the same as those
scheme described in Section 6 of this paper.

Evaluation Metrics: We defined three different evaluation
metrics: recognition accuracy is the ratio of the preprocessed
test samples to be correctly identified, which is the primary
indicator of WiCrew’s gait recognition ability, The confusion
matrix indicates whether there is confusion among multiple
identity classes, with each column representing the identity
label predicted by the model and each row representing the
actual identity label. True positive rate is the proportion of
legitimate users in the training set that are correctly classified.

Model Training: Our training data set contains two
labels, the identity label (from ”T0” to ”T9”) representing
the identity of 10 targets and the speed label (from ”S0”
to ”S1”) representing ”fast” and ”slow” walking speeds. To
train the WiCrew system, both the labels must be trained
simultaneously. However, because the baseline method does
not require speed labels in the training process, we only
used the fast walking gait data of the target for training and
evaluation.
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Fig. 12: Accuracy comparison
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WiCrew Approach

B. Overall Performance Comparison

First, the performance of our system’s gait recognition was
evaluated without considering the target’s speed variation.
This is the same as evaluating a system only in its source
domain. We utilized roughly divided training and test datasets
of comparable size (speed-dependent datasets). Evaluation ex-
periments are carried out in land and ship scenarios. Figure 12
depicts the average performance of WiCrew as well as five
other baseline techniques. The results show that WiCrew’s
identification accuracy in the land scenarios is 88.56%, which
is 14.92% higher than WiWho, 8.28% higher than WiFiU,
and 6.7% higher than WiFi-ID. But it is 1.78% less than
Agait and 1.56% less than CNN-based. This demonstrates
that the WiCrew system’s feature extractor can efficiently
extract identity features from WiFi signals, which can then be
used by the identity recognizer to recognize individuals. The
capacity of CNN-based feature extractors to extract features is
superior to that of conventional wavelet transform and signal
statistical features. The severe performance degradation of
WiWho in the cruise scenario may be due to a large amount
of noise in the 0.2-5 Hz band. However, the addition of
the domain discriminator in WiCrew removes some domain-
specific identity characteristics, which is the primary reason
why WiCrew’s accuracy is inferior to that of Agait and CNN-
based. However, when experiments were carried out on ships,
the results changed. WiCrew has a recognition accuracy of
86.63%, which is more than the other five baseline approaches.
This is due to the fact that WiCrew was designed specifically
for the ship environment and can successfully eliminate the
hull vibration component from the WiFi signal.
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tion robustness
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C. Performance Comparison with Different Walking Speed

We also examine the robustness of gait recognition in terms
of walking speed stability. We recollect the gait of volunteers
walking at various speeds and utilized the original model for
recognition. Figure 13 illustrates the performance of WiCrew
in comparison with five other baseline approaches. Even if
the target’s walking speed changes, WiCrew’s recognition
accuracy reaches 86.56% on land and 84.63% on ships.
Our system has the best accuracy in both environments,
which suggests that our system selected speed-independent
and identity-discriminable features. Under the same settings,
WiWho and WiFiU perform significantly worse than the other
four schemes. In the ship scenario, the recognition accuracy
rates are 41.12% and 46.0%, and in the land scene, they
are 60.64 and 65.2%, respectively. This is because WiWho
and WiFiU must extract gait parameters such as gait cycle
and stride length, and a change in the target’s velocity will
cause these two features to change dramatically, resulting in
the lowest accuracy for these two systems. In Figure 14,
we present the confusion matrix of the system in a speed-
independent manner, i.e., the recognition accuracy of the
system for the target domain sample. The results show that
our system achieved an accuracy of 85% in the target domain.
This indicates that the WiCrew system successfully extracted
domain-independent features. As gait is loosely related to
height and weight, wireless signals reflected by the body also
carry bone density and fat content. Therefore, it can be seen
that T0, T7, and T8 are more likely to be misjudged due to
their close height and weight. Because T1 and T5 have the
most significant body size differences, they have the highest
recognition.

D. Performance Comparison with Different Vibration Levels

We also examine gait recognition robustness in terms of
hull vibration level to ensure that our systems can work
stably on ships, even in extremely harsh environments. As we
were unable to correctly measure the vibration levels of real-
world ships, we conducted this experiment in the laboratory.
Specifically, we used the full mission navigation simulator and
the 6-DOF ship motion simulation platform to simulate the
vibration degree of the ship hull when the ship encounters five
different levels of wind and waves. We tested the performance
of our system at five wind and wave levels and the results
are shown in Figure 15. It can be seen that our system can
maintain a good identification accuracy under different levels



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXX 2022 11

of wind and waves. However, the identification accuracy of
the baseline method decreased when the vibration level of the
ship increased.

E. Performance Comparison With Different Number of Targets

We also examine gait recognition robustness in terms of
target’s number. Considering that WiCrew’s gait recognition
performance is related to the numbers of targets in the training
set, we used the different number of targets to evaluate the
WiCrew and CNN-based models. The results are shown in
Figure 16. As the number of targets increased from three to
ten, the average recognition accuracy of the WiCrew and CNN-
based models decreased from 95.01% to 86.22% and from
91.20% to 83.06%, respectively.

VIII. LIMITATIONS AND FUTURE WORKS

Predefined path: The current WiCrew system requires the
crew to walk on a predefined path. The gait recognition models
trained for a given walking path cannot be used for testing
samples obtained on different walking paths. This is due
to the fact that the phase changes of the reflected signals
created by individuals traveling on distinct paths are different.
This characteristic limit our system’s deployment to narrow
corridors, such as those access to the bridge or engine room.
As part of future work, we intend to expand WiCrew to larger
areas and remove this limitation.

Multi-Person Identification: WiCrew assumes that there is
only one person walking in the WiFi area. The CFR power
would contain the impacts of all users’ motions when there are
multiple users, making it difficult to identify each individual.
As part of future work, we intend to provide WiCrew with
the capacity to simultaneously recognize multiple individuals
using WiFi signals with a wider bandwidth.

IX. CONCLUSION

This paper proposed WiCrew, a WiFi-based crew gait recog-
nition system. For the first time, WiCrew adopted EMD-ICA
based signal processing method to remove the ship vibration
component contained in the original CFR power. Next, using
an adversarial domain adaptation model, WiCrew can remove
speed-specific information from gait data while preserving
identity features, thereby enabling gait recognition for target
tasks at arbitrary speeds. This system can be widely deployed
on ships as an access control for key areas of the ship, such as
engine room, bridge, cargo hold, to ensure the safety of ship
operations. We expect that our system will also be applicable
to other dynamic situations, such as airplanes, subways, high-
speed trains, et al. Extensive evaluation demonstrated the
superiority of the proposed system.
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