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Abstract—To ensure the safety of marine traffic, ship watch-
keeping officers must maintain a high level of vigilance during
their watchkeeping period. Although advanced driving assistance
systems are available that can effectively measure driver alertness
and provide early warnings before any hazardous maneuvers,
such systems are primarily designed for road vehicles and are
considerably different from those used when operating a marine
vehicle. In this paper, we propose to use fine-grained channel
state information (CSI) obtained using commercial off-the-shelf
wireless fidelity (WiFi) to track an officer-on-watch’s vigilant
activities and determine, in real time, whether the ship officer is
adhering to safety guidelines. We developed a CSI path model and
a 2D multiple signal classification (MUSIC) algorithm to estimate
signal propagation path parameters, such as angle of arrival and
Doppler shift, in a low signal-to-noise ratio (SNR) ship environ-
ment. We then developed CSI velocity and activity models based
on finer-grained signal parameters, using wavelet transforms and
deep learning techniques to determine bridge-officer activities.
Finally, we developed a watchkeeping vigilance evaluation module
to determine whether a bridge officer was complying with safe
driving guidelines during their watchkeeping. Our proposed
system was implemented on a commercial WiFi platform, and
we extensively evaluated the system on an actual passenger ship.
Our proposed system achieved accuracies of 95.4% and 93.8% for
tracking walking movements and recognizing careless activities,
respectively.

Index Terms—Ship watchkeeping, vigilance detection, human
activities recognition, wireless sensing

I. INTRODUCTION

WATCHKEEPING is one of the most critical responsi-
bilities of ship bridge officers-on-watch (OOWs) dur-

ing maritime navigation, and it plays a vital role in improving
ship traffic safety. Low vigilance during watchkeeping may
lead to marine vehicle grounding or collision, resulting in
significant loss of human life and/or property damage [1].
According to the annual report on marine casualties and
incidents issued by the European Maritime Safety Agency,
71% of the common contributory factors for the 1,170 cited
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Fig. 1: A illustration of OOW activity monitoring using WiFi
signal. The activities can be captured in a device-free manner
based on existing WiFi infrastructures.

collisions or grounding accidents were mainly due to poor
lookout and poor radar use [2]. In a recent series of notable
accidents, the common features included fatigued officers,
one-man bridge operation at night, and no watch alarms.
Most of such errors arise from a driver’s failure to comply
with vigilant watchkeeping guidelines [3], including manual
distractions (e.g., when the driver leaves the bridge, falls
asleep, or becomes fatigued), visual distractions (e.g., when
the driver uses a smartphone or a reading book), less vigilance
to the sailing environment (e.g., when the driver fails to notice
an oncoming ship by radar or binoculars), and incorrect steer-
ing techniques [4–6]. Many aquatic traffic accidents can be
prevented if such careless driving behaviors are automatically
detected in real time.

The use of artificial intelligence technology to detect dan-
gerous driving behaviors in real time and evaluate driving
safety risks has recently attracted increasing attention. Unfor-
tunately, because such studies have mainly focused on road
vehicles such as cars and trucks, the study findings cannot
be directly applied to monitoring marine vehicle drivers.
Existing driver-monitoring systems can be categorized into
device-based or device-free systems. Device-based systems
mainly use wearable devices to monitor driving activities.
For example, previous studies have used inertial measurement
units (IMU), commonly found on smartwatches, to detect
dangerous steering wheel activities [7]. Another method for
detecting a driver’s sustained-attention behavior is to analyze
brain dynamics using electroencephalography (EEG) data [8].
However, such solutions only work while the driver is wearing
a smartwatch on their wrist or an EEG signal collector on
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their head, which limits the extensive real-world application of
such systems to ships. Device-free methods are mostly based
on computer vision [9], acoustic signals [10], and infrared
light [11]. Among them, computer-vision-based systems use
cameras installed around the driver’s seat to capture videos of
the driver’s face and detect visual distractions [12]. However,
the movement space required for a ship officer to perform
driving activities is much larger than that required for driving
vehicles. Therefore, it is challenging to maintain long high-
resolution videos of ship officers’ faces. Although depth cam-
eras, such as Microsoft Kinect [13], and infrared LEDs, can
be used to detect the presence and movement of ship officers,
ship watchkeeping officers have to perform a wide range of
activities to complete complex tasks during their long shifts.
Additionally, surveillance videos frequently cause concerns
regarding privacy as cameras capture individuals’ faces, attire,
and private behaviors [14] [15]. Prolonged exposure to these
videos can adversely affect the psychological and emotional
state of employees, with potential negative consequences on
their work [16] [17]. Therefore, there is a need to develop
reliable, robust, and low-cost technologies to monitor the
various activities of ship officers.

With the rapid development of mobile computing and
wireless infrastructures, using WiFi signals to detect human
activities has shown great potential. This sensing approach
can be achieved by reusing existing WiFi devices, which
have the characteristics of ubiquity and low cost. The in-
tuition behind this concept is that moving-object-induced
interference, including WiFi signal absorption, reflection, and
refraction, can largely change the multipath propagation be-
tween transceivers in an indoor environment. Moreover, it
has been shown that environmental changes, such as human
presence and movement, can affect the propagation of wireless
signals and change wireless channels. Specifically, physical-
layer channel state information (CSI), which can be obtained
from commercial WiFi devices, can reveal multipath wireless
channels at the granularity of orthogonal frequency-division
multiplexing (OFDM) subcarriers [18]. By exploiting CSI
amplitude and phase information and learning the characteris-
tics of their variations, device-free human activity recognition
can be achieved, including localization and tracking [19][20],
fall detection [21], gesture recognition [22], presence detec-
tion [23], pose estimation [24], state estimation [25], and vital-
sign monitoring [26].

This paper presents Wi-Watch, a WiFi-based shipbridge
watchkeeping vigilance tracking system. We propose the Wi-
Watch system, which could function not just as an auxiliary
to the video-based OOW vigilance tracking system, but also
markedly diminish the privacy implications led by camera us-
age. An illustration of Wi-Watch is shown in Fig. 1. Intuitively,
most inattentive OOW behaviors such as sleeping, reading,
and using smartphones are usually static on the bridge, which
negligibly interferes with indoor WiFi channels, while lookout
behaviors such as using radar and checking the sea route
will significantly change the CSI owing to OOW movement.
To accurately track OOW movements using CSI, we first
investigated various wireless-signal-processing algorithms and
found that the MUSIC algorithm [27], which can jointly

estimate the angle of arrival (AoA) and time-of-flight (ToF)
based on CSI diversity across multi-antennas in multiple-input
multiple-output (MIMO) systems, is promising for tracking
bridge officers. However, low SNR environments and vibrating
background reflections can considerably degrade the perfor-
mance of the MUSIC algorithm in mobile ships [28] [29].
To overcome these challenges, we first adopted a CSI path
model and a 2D MUSIC algorithm to estimate the signal-
propagation path parameters (AoA and Doppler shift) in a
low-SNR environment instead of ToF. Then, we resolved the
multipath at a much finer-grained resolution to extract the
OOW’s reflected signals from background vibrations through a
proposed foreground extraction algorithm. The extracted fine-
grained OOW reflected path parameters (i.e., Doppler shift
and AoA) were then used to evaluate the OOW’s vigilance
according to the OOW’s on-duty rules. The vigilance-tracking-
system design includes four modules: Activity state determina-
tion, walking velocity estimation, in-place activity recognition,
and vigilance evaluation. We implemented our system on
a commercial WiFi platform and extensively evaluated the
system on an actual ship. We demonstrated that our system
achieved accuracies of 95.4% and 93.8% for recognizing
activity state and recognizing careless activities, respectively.
The contributions of this study are as follows:
• We developed a WiFi-based method of recognizing the

vigilant behaviors of ship OOWs, which can preserve
officer privacy and alert officers when they are less
vigilant during watchkeeping.

• A CSI-path model was adopted and a MUSIC-based path
parameter estimation method was proposed to obtain a
Doppler-AoA spectrum of the target reflection path to
describe the OOW’s activity.

• We designed an attention-based long short-term memory
(LSTM) deep learning architecture to recognize the key
OOW lookout activities by converting the CSI segments
into 2D-image-based input representations.

• We implemented the Wi-Watch system in a mobile ship
environment with commercial WiFi devices, and the
experimental results showed that the system achieved an
overall recognition accuracy of 93.8%.

This paper serves as an expanded version of our previous
publication [30] presented at The 2023 International Confer-
ence on Marine Equipment & Technology and Sustainable
Development (Publisher: Springer Nature, Pages: 970-977,
Year: 2023).

II. MODELING VIGILANCE

We first introduce the duties OOWs perform during their
watch and illustrate several vigilant and non vigilant activities
decomposed into detailed actions. Then, we propose our basic
idea of tracking OOW vigilance with WiFi signals and show
our motivational experiments.

A. OOW Duties

OOWs are the deck officers responsible for watching and
navigating on the bridge. They continuously monitor the sea
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Fig. 2: An illustration of the OOW duty cycle with the duration
and attention occupation of each action. All actions are marked
with two colors to indicate vigilant and non-vigilant actions.

surface and report any hazards that may obstruct naviga-
tion and damage the ship. According to the International
Regulations for Preventing Collisions at Sea (COLREGS),
surveillance requires uninterrupted attention to the ship’s nav-
igation to inform about other ships, shipwrecks, wrecks, float-
ing objects, etc. The International Convention on Standards
of Training, Certification, and Watchkeeping for Seafarers
(STCW) stipulates that: Article 5 of the ”1972 International
Regulations for Preventing Collisions at Sea” shall be observed
at all times, and the following objectives shall be achieved:
1) Use sight, hearing, and all other available methods to
maintain a continuous alarm state; 2) Comprehensively judge
situations and dangers that endanger the safety of navigation,
such as collision and grounding; 3) Detect ships, airplanes,
ship victims, shipwrecks, and other navigational obstacles.

Fig. 2 shows the OOW duty cycle and indicates the duration
and attention occupation of each watchkeeping action. The
OOW duties are as follows: 1) Lookout: The officer should
concentrate on maintaining a regular lookout continuously and
shall not engage in or assign other tasks that will affect the
lookout; 2) Using radar: Using radar to watch is crucial to the
safety and must be maintained on the stipulated frequencies, as
per the regulations. 3) Compare the electronic charting system
(ECS): The OOW must check the position plotted by the
outgoing OOW and not depend entirely on the information
displayed on the chart. 4) The responsibilities of watchmen
and helmsmen should be separated, and the steering helmsmen
should not be regarded as watchmen (except on small boats).
5) Walking rounds of the bridge: Soon after handing over the
watch, the relieved OOW may take a round of the ship to
ascertain that fire safety is maintained, there are no signs of
a breach, nothing unusual, and no unsecured articles in the
accommodation. 6) Reading log: The OOW must read any
log entries made by the outgoing OOW before he leaves the
bridge.

B. OOW Vigilant-activities

It is well known that long shifts and distraction from
others lead to watchkeeper non-vigilance, and the inability to
strictly follow these rules leads to frequent accidents. Here,
we define some of the most common safe and unsafe OOW

Fig. 3: OOW activities sketches. Here, we show three rep-
resentative activities of OOW during his watch: using radar,
using binoculars, and walking, and we decompose them into
three phases.

actions. As shown in Fig. 2, several positive and negative
actions are associated with bridge watchkeeping. Positive
actions include using radar, using binoculars, and using the
steering rudder and can indicate that the OOW’s attention is
completely focused on ship safety. In contrast, some negative
actions including using smartphones, drinking water, and
reading/writing may distract the OOW’s attention away from
conducting a proper lookout. An illustration of each OOW’s
actions is presented in Fig. 3. We introduce the typical steps
involved in using radar as an example. Usually, radar usage can
be divided into the beginning, operating, and ending phases.
After walking over to and standing before the radar, the OOW
usually bends over and raises their hand to operate the radar.
While checking the radar, the OOW’s head and radar-operating
hand would swing slightly and intermittently. After that, the
OOW stands up and leaves to go perform other operations.
These actions can be further decomposed into six detailed
steps: 1) walking, 2) standing, 3) stopping, 4) raising hands,
5) swinging hand and head, and 6) standing up.

C. Vigilance-Tracking Intuition

Our work aims to evaluate the vigilance of the OOW
by extracting the WiFi channel parameters and continu-
ously recognizing the OOW’s real-time actions. Instead of
video-based watchkeeper-monitoring systems, the WiFi-based
activity-recognition system can preserve crewmembers’ pri-
vacy without using a camera and can be deployed using
the existing onboard WiFi infrastructure without incurring
additional costs. The basic idea behind tracking the OOW’s
vigilance is to recognize the specific positive lookout actions
by measuring the WiFi channel parameters. It is well known
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Fig. 4: Four different human activities have different effects
on WiFi CSI.

that in indoor environments, wireless signals are usually prop-
agated from the source to the receiver by reflecting off objects
such as walls and furniture, which is called the multipath
effect. When the OOW performs a gesture, their body parts
(e.g., arms, legs, and torso) move at different positions. The
wireless signals reflected off the body parts would propagate
over various distances and be superposed at the receiver to
form the corresponding CSI profile. By extracting the WiFi
propagation distance (i.e., ToF), AoA, and Doppler velocity
of the reflected WiFi-signal paths using a pair of APs and an
array of receivers, we can identify the OOW’s actions.

To facilitate the OOW’s activity recognition and vigilance
identification using WiFi signals, we exploit CSI, the fre-
quency description of the wireless channel, and extract the
wireless path parameters using signal processing techniques
such as the MUSIC algorithm. With the IEEE 802.11n MIMO
system, fine-grained CSI measurements from multiple anten-
nas can be extracted by leveraging commercial WiFi network
interface cards (NICs) such as an Intel® 5300 and an Atheros
9390 with public open-source tools [31] [32]. The CSI tools
utilize a channel-sounding mechanism in WiFi 802.11n/g to
report the CSI from the receiver for every received packet.
For example, the Intel 5300 NIC reports CSI for 30 groups of
subcarriers, spread evenly among the 56 subcarriers of a 20
MHz channel or the 114 carriers in a 40 MHz channel. The
channel matrix (X) obtained from 3 antennas can be presented
as follows:

CSI matrix =

 csi1,1 csi1,2 · · · csi1,30

csi2,1 csi2,2 · · · csi2,30

csi3,1 csi3,2 · · · csi3,30

. (1)

Each entry is a complex number, where csim,n denotes the CSI
value for the m-th antenna and the n-th subcarrier. |csim,n| is
the amplitude, and ∠csim,n denotes the phase.

Fig. 4 presents the results of a motivational experiment
illustrating the distinguished effects of four human activities
on WiFi CSI: using a radar, using binoculars, drinking water,
and walking. We aimed to demonstrate the ability to recognize

human activities through the distinct profiles of CSI signal
amplitudes. Initially, we randomly selected a subcarrier with
human activity from the CSI with 30 subcarriers and calculated
its amplitude. Subsequently, we performed the short-time
Fourier transform (STFT) on the amplitude signal to obtain
its spectrogram. This step helped us visualize the energy of
each frequency component over time, and better detect the
correlation between different frequencies and human activities.
The spectrogram demonstrates that different activities exhibit
unique frequency energy profiles. By utilizing the energy
profile of different frequencies, we can construct an activity
recognition model, which quantifies the correlation between
the movement speeds of various human body parts and specific
human activity. Although the CSI magnitude is clearly related
to OOW movement (mainly walking), it remains challenging
to identify in-place actions, such as using radar and drinking
water. Existing in-place activity recognition techniques are
mainly based on machine learning algorithms, which rely on
black-box feature exaction and require a labor-intensive and
time-consuming process of collecting training data sets, which
limits their deployment in ships.

III. PRELIMINARIES & SYSTEM OVERVIEW

In this section, we first introduce the basic MUSIC algo-
rithm and then raise two main challenges in a mobile ship;
that is, the low SNR environment and vibrating background
reflections. Based on this, we present an overview of our Wi-
Watch design.

A. Basic MUSIC Algorithm

Accurately extracting the signal path-propagation param-
eters (such as AoA and ToF) is the key to using WiFi
signals to achieve human-environment interactions. Usually,
subspace-based algorithms [e.g., MUSIC, estimation of signal
parameters via rotational invariant techniques (ESPRIT) [33],
and their variants] are used for estimating the signal path
parameters in multiple-antenna devices. The basic insight
is that signals propagated from paths of different lengths
introduce different phase changes at the receiver. Incident
signals from different angles across an array of antennas
can also introduce corresponding phase shifts according to
the distance between each antenna. The MUSIC algorithm
constructs the required spatial covariance matrix based on
the data from multiple antennas. Moreover, more antennas
can provide more array manifold vectors, thus forming a
better spatial covariance matrix for a more detailed analysis of
signal and noise subspaces. The WiFi NICs provide the CSI
measurement matrix (X), and the MUSIC algorithm can be
used to estimate the steering matrix A = [~a(θ1), · · · ,~a(θL)],
where ~a(θk) is the steering vector of the k-th path. The AoA
and ToF can be easily found from the steering matrix; however,
we omit the mathematical details here for brevity but refer
to the literature discussion about this idea [27]. The standard
MUSIC algorithm is an eigenstructure analysis method that
can compute the eigenvectors of XXH and estimate the
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Fig. 5: The path parameters (ToF and AoA) estimated by the
MUSIC algorithm. The multipath effect in a static ship is more
potent than that in a general office environment. When the ship
is sailing, the multipath effect will be further aggravated.

steering vectors orthogonal to these vectors. The correlation
matrix of X can be presented as:

RX = E[XXH ]

= AE[SSH ]AH + E[NNH ]

= ARSA
H + σ2I,

(2)

where S = [s1, · · · , sk] is the overall signal, and sk is the
k-th path signal. The n eigenvectors containing the largest
eigenvalues correspond to the n signals, and the remainder
are noise. The signal and noise subspaces are orthogonal, so
the spatial spectrum function is expressed as

P (θ)MUSIC =
1

aH(θ)ENEHN a(θ)
, (3)

where EN = [e1, · · · , eM−n] is the noise vector space. Sharp
peaks occurred at the AoAs of the incident signals. Although
the MUSIC algorithm is promising, it must still overcome two
challenges in ship environments.

B. Practical Challenges

1) Low SNR Environment: Subspace-based algorithms
mainly rely on the assumption that a strong line-of-sight (LOS)
path exists and that multipath signals can be easily decorre-
lated. However, owing to the metal structure and mobility of
the ship, much environmental noise is generated during its
voyages. For the 2.4 GHz WiFi signals, the partition loss of the
transmitted power can reach up to 40 dB, whereas most of the
radio waves are reflected by the metal surface. The dielectric
property of a metal surface can lead to numerous strongly
reflected signals and significantly increase the multipath effect
at the end of the receiver.

Fig. 5 compares the performances of MUSIC-based path-
parameter estimation in a real-world ship environment and
general office scenario. Fig. 5b clearly shows that when multi-
path echoes are strongly correlated, the AoA-ToF estimation is
severely degraded. When the SNR decreases, the orthogonality
degrades, which widens and shrinks the peak [34][35]. In this
example, the true ground position may not be at the maximum
point, and it is challenging to locate. Under the condition of
a SNR of -10 dB and four antennas, the calculated value
of the Cramer-Rao bound (CRB) for the MUSIC algorithm
is 1 degree [36]. This means that the minimum error in
AoA estimation is 1 degree. The dynamic environment of

D1
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3
M-1

M

δ
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Fig. 6: An example of vibration effect on the received signal.

ships presents a significantly low SNR characteristic, which
seriously reduces the accuracy of the MUSIC algorithm on
ships.

2) Vibrating Background Reflections: There are several
complex instruments on the bridge, including a marine radar,
an electronic chart system, and a rudder, and they are mainly
made of metal, which can significantly affect wireless signals.
In addition, when the ship sails, the hull and instruments
inevitably vibrate, which introduces dynamic multipath effects.
As described above, a multipath signal showing [37] a slightly
different signal phase arriving at a receiver would lead a huge
variation in magnitude. Interference happens when two path
signals superpose to form one resultant signal. The amplitude
of the resultant signal may be either larger or smaller than
those of the two participating signals, depending on the
phase difference between them. The phase offset induced by
vibration signals is as follows:

∆φ =
2π

λ
· 2∆d mod 2π, (4)

where λ is the wavelength. The phase change (∆φ) is related
to the change in the propagation distance, ∆d. According to
a previous study, the vibration can be smaller than 100 µm.
Owing to the WiFi bandwidth, it is challenging to identify
only the signal paths reflected by people out of all the paths.

The problems are as follows. First, only one CSI sample is
obtained for each WiFi packet; therefore, the sample interval
depends on when the packets arrive. Commodity WiFi devices
cannot send and receive packets at fixed precise intervals
owing to packet loss/delays caused by environmental noise
and interference. Therefore, adjacent CSI samples usually
are separated by varying intervals. Second, the WiFi signal
is transmitted to multiple subcarriers. Owing to frequency-
selective fading, different subcarriers have different SNRs. If
we select a subcarrier with a low SNR for processing, the es-
timated Doppler information will be less accurate. Separating
signals of nearby paths is challenging because reflected signals
are much weaker than direct-path signals. Therefore, it is
difficult to accurately estimate their parameters in interference
originating from a strong direct path. Although promising,
the MUSIC algorithm alone is insufficient to accurately track
OOW vigilance.
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Fig. 7: System overview.

C. System Overview

We propose a privacy-preserving WiFi-based OOW vigi-
lance tracking system Wi-Watch for a mobile ship environment.
The basic idea of our system is to track the OOW’s vigilant ac-
tions using WiFi signals by extracting fine-grained signal-path
parameters (i.e., ToF and AoA) and evaluating their vigilance
according to the OOW’s duty rules. The design of the Wi-
Watch system includes four modules, i.e., OOW activity state
determination, walking velocity estimation, in-place activity
recognition, and vigilance prediction. To overcome the low
SNR and vibrating background, we first adopted the CSI-path
model and the MUSIC-space-alternating generalized expecta-
tion (SAGE) combined algorithm to accurately estimate the
signal-propagation path parameters [i.e., AoA, ToF, and ToF
change rate] in a low-SNR environment. Through a novel
path-separation algorithm, we can resolve multipath at a much
finer resolution, thereby isolating only the signals reflected off
targets of interest. Meanwhile, a vibration-background cancel-
ing method is proposed to extract the foreground information.
An activity state determination module based on the selected
human reflection signal paths has been proposed to distinguish
between three states: walking activity, in-place activity, and no
activity.

Usually, a proper lookout during watchkeeping requires
the OOW to walk through the bridge periodically. Therefore,
walking plays an important role in OOW duties. To recognize
walking, we adopt a CSI velocity model, which quantifies the
correlation between the change in the signal path distance and
human walking velocity. By estimating the OOW’s walking
velocity, we can evaluate the vigilance of the OOW in a coarse
grid. For in-place activities only involving the movements of
relatively small body parts, WiFi-based activity recognition is
more challenging owing to the limited CSI resolution [38].
Moreover, reflections originating from body parts may propa-
gate through different paths in complex indoor environments.
To accurately identify the body-part movement signals, we
utilize Doppler-AoA segment pairs to derive a CSI activity
model. Dynamic time warping (DTW) is used as a similarity
metric to align the varied-length activity profiles. The in-

place activity can be recognized by calculating the similarity
between a CSI trace and a preconstructed activity profile.
Finally, the histograms of the OOW activities are compared
with the OOW’s duty cycle to achieve a highly robust vigilance
prediction metric.

IV. WI-WATCH DESIGN

We first describe data preprocessing and activity determina-
tion, followed by presenting walking velocity estimation and
in-place activity recognition modules.

A. Data Preprocessing

1) Data interpolation: Wi-Fi packet loss is a common
occurrence in real-world settings. To mitigate the potentially
negative effects on experimental results caused by sample jitter
resulting from such losses, we perform CSI interpolation. We
use one-dimensional linear interpolation algorithms to ensure
the generation of evenly spaced CSI with a 1-millisecond inter-
val (transmission rate of 1,000 packets/s) between consecutive
measurements.

2) CSI cleaning: Due to instances of desynchronization
between transmitters and receivers, along with hardware im-
perfections, the CSI procured by commercial WiFi devices
often contains high levels of noise, making it unsuitable for
immediate use in channel parameter estimation. To acquire
accurate channel estimation results, it is essential to cleanse the
CSI data. Thus, we refer to the CSI cleaning approach posited
in reference [39]. Primarily, to neutralize nonlinear errors in
the CSI, we employ a coaxial cable of a predetermined length
to bridge the transmitter and receiver, thereby generating a
CSI calibration template. Next, we eliminate the random CSI
phase offset caused by the sampling frequency offset and
packet detection delay by taking the conjugate multiplication
of CSI data from two adjoining antennas on the same Wi-Fi
card. Finally, we also remove the strong direct path signal to
increase the accuracy of the Doppler estimation of the weak
reflection signal.
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3) Low-pass filtering: Normal human activities involve
limb movements with speeds not exceeding 3 m/s (typical
average walking speed ranges from 0.8 to 2.2 m/s, and the
swinging speed of arms and lower legs does not exceed
2.5 m/s) [40][41]. The maximum Doppler frequency shift
caused by normal human activities in a 2.4 GHz WiFi signal is
48 Hz [42]. Therefore, excessively high-frequency components
in CSI are unlikely to be caused by human activities. To mit-
igate high-frequency noise, we employ Butterworth low-pass
filters, which are widely used in signal processing to attenuate
high-frequency components while retaining the low-frequency
components of a signal. Butterworth filters are known for their
symmetric response and are effective in envelope analysis due
to their ability to preserve the signal duration. Specifically, we
have set the cutoff frequency of the low-pass filter to 200 Hz
in order to effectively eliminate high-frequency components
in the CSI data that are not attributable to human activities.

B. On-duty Activity State Determination

In this section, we first introduce the CSI-path Model. Next,
we introduce the MUSIC-based Joint Parameter Estimation
algorithm. The Foreground Extraction module is then pre-
sented, which is responsible for extracting the signal reflected
from the human body based on the estimated signal path
parameters. Finally, we present the Activity State Determi-
nation module that recognizes the activity state of OOW and
measures the duration of each respective state.

1) CSI-path Model: If a WiFi signal propagates through N
paths to arrive at the receiver, the CSI measurements for paths
at frequency f and sensor (antenna) s can be denoted by the
following equation:

H(f, t, s) =

N∑
k=1

αk(f, t, s)e−j2πfτk(f,t,s) +N(f, t, s), (5)

where αk(f, t, s) is the complex value representing the atten-
uation and phase of the k-th path. N(f, t, s) is the complex
white Gaussian noise that captures the background noise.
e−j2πfτk(f,t,s) is the phase shift caused by the signal path
delay (τk) and wave frequency f . Owing to the multiple
frequency and antenna measurements, the phase shift can be
further denoted as:

H(f + ∆f, t, s) =

N∑
k=1

Ake
−j2π(f+∆f)τk ,

H(f, t+ ∆t, s) =

N∑
k=1

Ake
−j2πf(τk−

vk
c ·∆t)

H(f, t, s+ ∆s) =

N∑
k=1

Ake
−j2πf(τk+∆s·φk),

, (6)

where ∆f , ∆t, and ∆s are the differences in the subcar-
rier frequency, packet arrival interval, and antenna distance,
respectively. Ak is the abbreviation of αk(f, t, s); c and vk
denote the velocity of light and the path-length changing
rate, respectively. fD = f · vk/c is the Doppler frequency
shift between the transmitter and receiver, and φk is the
AoA. We can denote the k-th path signal parameters as

θk = (τk, φk, fDk). Next, our goal is to accurately estimate
these parameters for all the paths.

2) MUSIC-based Joint Parameter Estimation: To solve
Equation 6, we propose a 2D MUSIC algorithm to transform
raw WiFi CSI into 2D WiFi AoA-Doppler parameters. Assume
that we have received M CSI samples from S antennas in each
time window. Considering the CSI window measured from all
the antenna arrays, the phase difference between the M CSI
samples and the first sample measured from the first antenna
can be expressed as:

~a(v) = [1, e−j2πf
v
c ·∆t1 , e−j2πf

v
c ·∆t2 , · · · , e−j2πf v

c ·∆tM ]

= [1, Ω1, Ω2, · · · , ΩM ],
(7)

The phase difference between the S antenna array and the first
antenna in one CSI sample can also be expressed as:

~a(φ) = [1, e−j2πf∆s1·φ, e−j2πf∆s2·φ, · · · , e−j2πf∆sS ·φ]

= [1, Φ1, Φ2, · · · , ΦM ],
(8)

Steering vectors ~a(v) and ~a(φ) are caused by the movement
of the Doppler velocity and the signal path arriving at AoA.
Therefore, the received CSI sample matrix can be represented
as:

H(f) =

 H(t0, s0) · · · H(t0, s0 + ∆sS)
...

. . .
...

H(t0 + ∆tM , s0) · · · H(t0 + ∆tM , s0 + ∆sS)


=

 1 · · · ΦS
...

. . .
...

ΩM · · · ΩM · ΦS

×H(f, t0, s0) +N(f)

= AS(f) +N(f),
(9)

The 2D MUSIC algorithm can now be applied to jointly
estimate the AoA and Doppler shift of each path using
Equation 3.

3) Foreground Extraction: The path parameters estimated
by 2D-MUSIC algorithm consist of multiple path signals,
including reflection signals from OOW and vibrating objects
within the bridge. As a result, a filtering algorithm is necessary
to extract the reflection path parameters generated by human
movements and remove the vibration noise. The key observa-
tion is that the change in path parameters caused by human
movement is more continuous and regular compared to the
change caused by the vibration of objects inside the vessel,
which is random. In this section, we apply the graph-based
path matching (GPM) algorithm proposed in Widar2.0 [43]
to extract the reflection path parameters of human move-
ment, namely foreground, while eliminating the reflection path
caused by the vibrating objects. The GPM algorithm combines
the two sets of parameters with the smallest difference between
adjacent moments and identifies the combination of parameters
with the highest weight as the reflection path parameters of
continuous human movement.

The principle of the GPM as shown in Fig. 8, suppose that
T time-series CSI packets are measured for K signal paths in
the environment. θk denotes that estimated signal parameters
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Fig. 8: The principle of GPM.

of the k-th path. Θt denotes that estimated signal parameters
in the t-th packet. θkt denotes the estimated signal parameters
of the k-th path in the t-th packet. Next, a weighted T-partite
graph G=(θkt, E, W ) is defined, where ek2t2k1t1

∈ E represents
the edge between θk1t1 and θk2t2 at any adjacent moments;
and wi2j2i1j1

∈ W represents the weight of the edge ek2t2k1t1
. The

weight is defined as the distance between parameters:

wk2t2k1t1
= ‖c (θk1t1 − θk2t2)‖ , (10)

where c is the vector of coefficients that normalize different
parameters AoA and DFS. We then denote xk1t1k2t2

as binary
variable that indicates whether the edge ek2t2k1t1

is selected for
matching. Thus, the objective function is:

xopt = arg min
x

wTx, (11)

where w and x are vectorized weights and binary variables
respectively. To ensure that selected edges form K T-order
complete graphs, several constraints should be fulfilled.

xkt2kt1
= 0,

T∑
t2=1

xk2t2k1t1
≤ 1,

T∑
t1=1

K∑
k2=1

T∑
t2=1

xk2t2k1t1
= T ·K–T,

xk2t2k1t1
+ xk3t3k1t1

≤ 1 + xk3t3k1t1
,

(12)

This optimization problem can be solved using a binary
integer program (BIP). By optimizing the objective function,
the two sets of parameters with the smallest difference be-
tween two adjacent moments are found and combined into a
reflection path. Because the signal parameters reflected from
people change slowly with time, the background reflection
parameters change significantly at each time step. Equation 11
can be used to eliminate the noisy reflection and determine
the OOW’s reflected signal. As shown in Fig. 8, the blue and
red plots indicate the path parameters reflected by people and
the environment, respectively. In addition, the static paths are
removed by subtracting the mean value from the conjugate
multiplication to avoid interference with the OOW’s reflecting
signal selection because of its high power before path selec-
tion.

4) Activity State Determination: This module is designed to
detect the activity states of OOW, along with their respective
start and end times. We propose that OOW activity states
fall into three categories: walking, in-place, and no activity.
After obtaining the foreground parameters from the CSI mea-
surements, Wi-Watch then segments the AoA-Doppler time
series into several traces and determines the activity state by
analyzing the changing AoA-Doppler pattern. Specifically, we
first segment the AoA-Doppler time series, with a segment
interval of 5 seconds. Then, the AoA-Doppler sequence seg-
ments are matched with the trained HMM models of different
activity states to obtain posterior probabilities for determining
the OOW’s activity state. Finally, the OOW activity state and
the start and end time of the activity state are determined.
When using HMMs to determine activity, it is assumed that the
observed feature vector sequence, corresponding to an activity,
is generated by a Markov model. The Markov model is a finite
state machine that changes state once per time unit. Each time
a state is entered, a feature vector is generated from an output
probability density also known as the emission probability
distribution. Additionally, the transition between states or the
state loop has a probability and is dictated by a discrete proba-
bility distribution called the transition probability distribution.
HMM models have the capability to capture information from
all training samples and are therefore effective, even when
there is high within-class variance. For further information
regarding HMM model training and classification, please refer
to Section V.

C. Walking Velocity Estimation

We propose a CSI-velocity model to estimate the moving
velocity of the OOW for estimating vigilance. The duration
and moving velocity are the key evaluation criteria for an
OOW’s lookout. In this module, we first introduce the CSI-
velocity model. Next, we introduce the walking speed estima-
tion method based on wavelet transformation.

1) CSI-Velocity Model: Although we can obtain the
Doppler shift of each path reflected from the human body
using the previous method, the extracted Doppler frequency
shifts are not the real velocity of the moving OOW. Owing
to the complex shape of human bodies, wireless signals can
be reflected from different body parts moving at different
velocities. All the body-part velocities jointly determine the
Doppler shifts of the target-reflecting paths. An advanced CSI-
velocity model that outputs movement information is required
to estimate the real walking velocity of OOWs from multipath
Doppler shifts. According to CSI, the Doppler frequency shift
of the signals extracted from reflected off a moving human
body can be represented by

|H(f, t)| = |Hs(f, t)|+
∑
k∈Nd

|αk(f, t)| cos(2πfDk + φsk),

(13)
where the static component Hs(f) is a constant vector, while
the dynamic component is a linear combination of a set of
reflected paths represented by sinusoids. The frequency of
the sinusoids is related to the Doppler shifts. Therefore, the
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OOW’s walking velocity can then be estimated by extract-
ing each frequency component using time-frequency analysis
tools.

2) Walking Velocity Estimation: To estimate the OOW
walking velocity, we used a discrete wavelet transform (DWT)
to separate these components in the frequency domain. Ac-
cording to IEEE 802.11, at a frequency of 2.472 GHz, the
subcarrier wavelength is approximately 12.14 cm. In our ob-
servation, the frequency of continuous OOW walking is mainly
in the range 15-20 Hz, while the frequency of in-place activ-
ities is mostly below 10 Hz. The continuous-walking-induced
Doppler shift can be obtained by measuring the frequency,
and the corresponding velocity of the path-length change
is approximately 1.8-2.4 m/s. Considering that the wireless
signal travels back and forth, the velocity of the moving
human body is approximately half of the change in the signal-
path velocity, which is approximately 0.9-1.2 m/s. To further
extract the frequency component, wavelet decomposition was
performed on the filtered CSI power. Decomposing one level
can obtain the approximation coefficient (CA) and detail
coefficient (CD), which represent low- and high-frequency
information, respectively. Using the Harr wavelet function,
the CSI signal is processed using four levels of wavelet
decomposition. The first level obtains the coefficient (CD1) of
the high-frequency band (55-110 Hz), where CD1 represents
the moving velocity of 3.3-6.7 m/s in the 2.4-GHz frequency
band. CD2 of the second level indicates the range 27.5-55
Hz, and the corresponding walking velocity is 1.7-3.3 m/s.
After four-level decomposition, the wavelet coefficient matrix
(X = [CA4,CD4,CD3,CD2,CD1]) indicates the energy in
each frequency. We can obtain the OOW’s walking velocity
by measuring the energy of each frequency band.

D. In-place Activity Identification

Once the activity states discrimination module identifies an
in-place activity, it segments it and forwards it to the in-
place activity recognition module. OOW activity durations
generally vary; for instance, the time required for a crew to
visually survey an area using binoculars may range from 3
to 6 seconds, depending on the situation. Consequently, all
OOW activities were normalized to a standard length with
dynamic Time Warping (DTW). Additionally, considering that
the AoA-Doppler sequence is a time series data, we used the
LSTM model to recognize the OOW in-place activities.

1) CSI-activity Model: The proposed attention-based
LSTM framework is shown in Fig 9. First, a sliding window
consisting of Doppler-AoA pairs is fed as input into an
LSTM network for automatic OOW-activity feature learning.
An LSTM cell contains a hidden state (h), a cell state (c), and
three gates: a forget gate (f ), an input gate (i), and an output
gate (o). In every step, input H(t)

g is stacked with the previous
hidden state (ht−1) and is multiplied by LSTM weights WL

to determine the values of all the gates and the variable (g).
The three gates are used to determine the current inner states
(ht) and (ct). Among them, f decides whether to forget the
previous state (ct−1), i decides whether to read the new input
(H(t+1)

g ) and determines the current cell state (ct) with g.

AoA-Doppler Sequence

Attention

Merge

Flatten Layer

Dense Layer

Sotfmax Layer

LSTM LSTM LSTM LSTM

Activity Labels

...

...

Fig. 9: The proposed attention-based LSTM framework for
CSI-activity model.

Finally, the current state (ht) is calculated as o and ct. The
LSTM cell update is defined as follows:

i
f
o
g

 =


σL
σL
σL

tanh

WL

(
ht−1

H
(t)
g

)
, (14)

ct = f � ct−1 + i� g, (15)

ht = o� tanh(ct), (16)

where, �, σL, and tanh represent the element-wise multi-
plication, logistic sigmoid activation, and hyperbolic tangent
functions, respectively. WL is the weight of the LSTM cell,
which is used for the AoA-Doppler sequence transfer. A Tanh-
based score function was used to evaluate the importance of
each feature. The attention model is designed as a layer to
normalize each feature at every time step and indicates the
importance of the features. The score (si) of the attention is
obtained as follows

si = tanh(WThi + b), (17)

where WT and b represent the weight and bias, respectively.
We obtain the attention matrix by utilizing the hidden states
of LSTM through element-wise multiplication with the LSTM
output. Then, the feature matrix is transformed into a feature
vector by a Flatten Layer. Three dense layers are used to map
high dimensional feature vectors to low dimensions. Finally,
a softmax classification layer is used to identify different 6
in-place activities with the final feature vector.

2) Model Training: The proposed attention-based LSTM
framework is trained to determine all the model parameters
based on training data with true labels. Initially, all parameters
are randomly assigned, and then the training data is inputted
into the attention-based LSTM to predict the labels. Each ac-
tivity sample is normalized to the same length of 10 seconds. It
is split into 50 groups of vectors with an interval of 0.2 seconds
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TABLE I: The parameters of proposed attention-based LSTM
model.

Parameters for deep learning model Values

The units in LSTM 400
The number of attention hidden state 128

Learning rate 1e-4
Batch size 128

Epochs 60

and sequentially fed into the LSTM model. Each group of
vectors has a length of 200× 2 = 400. The LSTM model has
a total of 128 hidden state units. The predicted labels and the
given true labels are utilized to calculate the categorical cross-
entropy loss. Gradient-based optimization methods are applied
to update the model parameters through back-propagation. We
use adaptive moment estimation (ADAM) for this purpose,
as it can effectively compute adaptive learning rates for the
parameters during optimization. The finalized parameters of
the attention-based LSTM model are demonstrated in Table I

E. Vigilance Evaluation

We have defined the low vigilance state of OOW during
on-duty hours, and Wi-Watch system must sound an alarm
immediately upon detecting this state. The low vigilance
state includes off-duty, sleep duty, and prolonged inactivity.
According to the Regulations on Watching Crews at Sea, the
crew on duty on the bridge must be composed in such a
manner that there is no chance of anyone being left unattended
under any circumstances. In addition, the bridge prevents the
driver from sleeping at any time. If the driver remains inactive
for more than 3 minutes, as indicated by the test result,
an early warning will be triggered. It is imperative that the
driver continuously performs tasks such as measuring and
plotting charts and other related operations during the duty
period, while also being aware of the surrounding navigation
information.

V. EXPERIMENTS & EVALUATIONS

We fully implemented and extensively evaluated our pro-
posed system on an actual ship. We first introduce the testbed
and experimental setup. After that, the system evaluation and
performance are described.

A. System Implementation

Wi-Watch consists of one transmitter and at least one
receiver. The transmitter employs a TP-LINK router, which
operates on the 2.4 GHz frequency band and has a 20 MHz
bandwidth. The receiver employed a standard ThinkPad T400
laptop, outfitted with a commercial off-the-shelf 802.11n 5300
NIC and the operating system Linux kernel 2.6.34. The model
training and testing are performed by a Linux desktop with
a 3.40 GHz Intel® E3-1231 CPU, 15.6 GB of RAM, and
Nvidia GTX 1080 GPU. The Wi-Watch components were im-
plemented using Python. For the deep neural network, we con-
structed the attention-based LSTM network using Pytorch. All
the experiments that we report in this paper were performed in

Fig. 10: A typical setup of devices and environment.

TX
RX

(a) In simulator.

TXRX

(b) In ship.

Fig. 11: Experiment scenarios of a ship driving simulator and
a real-world passenger ship.

the 2.4 GHz frequency band with 20 MHz bandwidth channels.
Note that the 802.11n CSI tool only provides CSI values
of 30 sub-carriers even though a 20 MHz WiFi channel has
52 sub-carriers. We implemented our experimental testbed on
a real-world cruise ship dubbed “Yangtze Goddess II” from
Chongqing to Yichang. The WiFi transmitter and receiver
were placed 3 m apart under line-of-sight (LOS) conditions.
The transmitter activates one antenna and broadcasts Wi-Fi
packets at a rate of 1,000 packets per second. We have set
the transmit power to a constant 15 dBm, which is a common
transmit power for WiFi devices operating in the 2.4 GHz band
and complies with China’s regulations on Effective Isotropic
Radiated Power (EIRP) [44]. Considering the presence of an
automatic gain control (AGC) module in WiFi, it is necessary
only to incorporate an AGC error elimination module [39].
The receiver activates all three antennas which are placed in
a line. As shown in Fig. 10, the user is not on the direct path
between the transmitter and receiver. This is a normal case in
real life.

B. Evaluation setup

To accurately evaluate the Wi-Watch performance, the ex-
periment was carried out on an actual cruise ship (“God-
dess II”) from Chongqing to Yichang and in a ship-driving
simulator at the Wuhan University of Technology. Fig. 11
shows the interior of the simulator and the real-world ship
bridge, where the transceivers were placed 1 m above the
floor. The ship bridge was on the 5th floor in a 19m ×
6m room, which is the key area where OOWs perform their
duties. A ship ship-driving simulator, which is designed to
mimic the instrumentation and facilities of real-world ships,
was employed in a 6m × 6m room to train the crew’s skills.
To label the raw CSI data, 7 OOW activities were collected
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TABLE II: Information about the 15 experimental assistants.

Name Gender Age Ht(cm) Wt(kg)
A F 25 163.1 56.2
B F 28 165.3 58.5
C F 30 168.5 82.5
D M 23 172.4 85.1
E M 25 180.7 73.6
F M 24 172.5 62.6
G F 23 165.8 46.9
H M 24 170.8 68.4
I M 31 176.6 80.1
J F 21 168.6 57.6
K F 21 187.2 76.5
L M 27 180.2 78.4
M M 26 174.1 64.2
N F 24 173.7 61.6
O M 26 178.7 85.6

using a camera, including walking, reading, steering, drinking,
using the radar, using binoculars, and using a smartphone.
We assume that only the experimental assistant is present in
the sensing area (between the transmitter and the receiver), as
moving entities would introduce noise from reflected signals,
thereby leading to a less accurate estimation of the signal path
parameters for the target assistant. Each activity was performed
20 times for 60 s by 15 experimental assistants (8 males and 7
females). At the end of the activity, the assistant remained still.
The weight of the assistants varies from 56.2 kg to 85.6 kg, the
age varies from 21 to 30 and the height varies from 163.1 cm
to 187.2 cm. And the details of the experimental assistant
information are illustrated in Table II.

C. Data Description

We collected data from two scenarios. Our dataset consists
of three driver activity states, including seven typical on-
duty activities within the in-place activity state. Prior to data
collection, we required the experimental assistant to watch
example videos and sketches of each activity. The sketches
of the OOW activities are plotted in Fig. 3. Furthermore, the
experiment assistant conducts several in-place and walking
activities which are not profiled. They are used to evaluate the
robustness of our system for recognizing unknown or random
activities. Therefore, there are over 3,600 activity samples
(15user×20times×6activities×2scenarios) in total. We divide
the dataset into training and testing randomly with a ratio of
9:1. Note that the data are collected on different days.

D. Performance Metrics

We use both the confusion matrix and recognition accuracy
to evaluate the performance of our system.

Confusion Matrix. Each row represents the actual activity
performed by the experimental assistant and each column
shows the activity it was classified as by Wi-Watch. Each cell
in the matrix corresponds to the fraction of activity in the row
that was classified as the activity in the column.

Recognition Accuracy. The percentage of the activities
correctly classified by our system.

(a) Path #1. (b) Path #2.

(c) Path #3. (d) Path #4.

Fig. 12: Doppler shift and AoA estimation of four paths from
raw CSI.

E. System Performance

1) Baseline Methods: We compared Wi-Watch with 4 state-
of-the-art CSI-based activity-recognition programs (CARM,
WiSH, and E-eyes, Mosense) in a mobile ship environment.
CARM [45] is the Baseline method that uses off-the-shelf
WiFi NICs and correlates CSI power dynamics with human
motion to determine activities such as running, walking, and
falling. WiSH [46] is a real-time human presence detection
system that can shift CSI eruptions due to irrelevant instan-
taneous motions or environmental changes. E-eyes [47] com-
pares the CSI measurements with the location-activity profile
to recognize daily activities associated with several specific
locations in the home. Mosense [48] designs a distance-
based subcarrier selection algorithm that captures the different
impacts of human movements on WiFi signals by capturing
the similarities between subcarriers.

2) Doppler-AoA Estimation: We show the performance of
the proposed MUSIC-based Doppler-AoA estimation algo-
rithm. Fig. 12 plots the results obtained when an experimental
assistant walked on the ship bridge at 1.5 m/s. The x- and y-
axes represent the path AoA and ToF parameters estimated for
each path, respectively. The ToF resolution is 0.2 × 50 ns = 10
ns and AoA is 1◦. Because the ToFs and AoAs of the hand and
body reflections were different in each estimation, the different
propagation paths had to be separated, and the parameters had
to be estimated individually. Clearly, our proposed method
separated the four main paths easily, and the peaks merged
into a 2D profile at each path. Paths #2 and #4 clearly show
the main reflection object, the moving OOW, in the area. The
distance and AoA estimation of the two paths were differen-
tiable in the 2D profiles. However, the multipath impact is
severe on ship bridges, especially the reflectors that vibrate
while the ship is sailing. When reflectors are vibrating on the
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(a) Path #1 AoA extraction. (b) Path #1 Doppler shift extraction.

(c) Path #3 AoA extraction. (d) Path #3 Doppler shift extraction.

Fig. 13: Foreground signal paths extraction for low SNR ship
environment.

bridge, the orthogonality of the MUSIC matrix may degrade,
possibly resulting in multiple peaks, as shown in paths #1
and #3. Therefore, the foreground parameters (which are the
signal paths reflected from the OOW) must be identified,
and the signal paths must be eliminated from the irrelevant
objects before determining the OOW’s activities. Practical tests
revealed that our proposed AoA-Doppler parameter estimation
algorithm, based on the 2D-MUSIC, can estimate a signal with
a length of 0.1 seconds (sampling rate 1000 packets/s) in 0.001
seconds. For a signal with a length of 10 seconds, we used
a time window and a sliding window, both of 0.1 seconds in
length, allowing the algorithm to complete in 34.088 seconds.

3) Foreground Extraction: To evaluate the performance
of the proposed foreground extraction method, we collected
several traces without placing an object in our experimental
setup. The dark dots in Fig. 13 show the typical multipath
signal parameters of a trace at each time step, where the
experimental assistant walked from the radar to the steering
wheel and then turned back. We also weighted the color of the
dots to illustrate the parameters and their corresponding path
power. Clearly, the AoA and Doppler-shift parameters mainly
exhibited 2 paths from time 0 to 8 s. Although the starting and
ending points of both paths were similar, the changing patterns
were opposite. Although both inverse-changing path parame-
ters can be distinguished by visual inspection, it is difficult to
classify the parameter dots because the multipath parameters
are confusing together. Moreover, the estimated parameters are
mixed with surrounding environmental noise and the multipath
originating from the vibrating reflectors. Using our proposed
foreground extraction method, the OOW’s reflected signal path
has been clearly selected out of the cluttered estimations and
is plotted in red. Although the ToF estimation is limited by the
strong noise in the metal environment and the low resolution
of commercial WiFi NICs, the Doppler shift caused by the
changing ToF can be used to describe the signal propagation

TABLE III: The time overhead of all samples in the activity
state determination module during the training and testing
stages.

Activity state Training size Training time(s) Testing size Testing time(s)

Walking 332 39.42 30 0.42
In-place 288 35.48 30 0.48

No activity 190 25.65 30 0.40

variation as a fine-grained recognition feature. Therefore, the
AoA and Doppler shift changes introduced by walking OOWs
can be obtained in such a low-SNR ship environment. Prac-
tical tests have demonstrated that our foreground extraction
algorithm, which is based on the GPM, can match an AoA-
Doppler sequence for a signal path of five seconds in duration
within 0.136 seconds.

4) Activity State Determination: To evaluate the perfor-
mance of the HMM-based activity state determination model,
10 sets of OOW activity state samples, belonging to each of the
3 activity state types, were selected as test samples. These sam-
ples were then respectively input into the 3 established HMM
models, and the average of the maximum output probabilities
obtained by the test samples in the HMM model library was
computed. In order to display the calculation process of the
maximum probability output of each sample in HMM model,
we selected randomly one sample as a representative to show
the computation matching process of the test samples in the
HMM library. The calculation results are shown in Fig. 14. The
output probability of each state sample in the corresponding
HMM is the largest. Additionally, we compare the overall
performance of our method to four state-of-the-art activity
state recognition methods and present the recognition accuracy
of each activity state using each method. In this experiment,
we collected a dataset of 900 activity state samples in ship
environments and utilized 90% for training and 10% for testing
purposes. Table II illustrates the time allocations for all test
samples during the testing phase. As shown in Fig. 14d, our
method achieved an average accuracy of 94.38% for all 3
activity states, which is more than 10% higher compared to
other methods, representing a significant improvement. This
indicates that our system can remove the noise brought by
ship vibrations to WiFi signals and achieve robust activity state
recognition.

5) In-place Activity Recognition: In this section, we eval-
uate Wi-Watch’s ability to recognize in-place activities. We
randomly selected a total of 2,400 samples from different
users, including 6 kinds of in-place activities, and divided them
into training sets and test sets with a ratio of 9:1. The results
indicated that the SVM machine-learning algorithm employing
handcrafted features exhibited the poorest performance. The
HMM model exhibited slightly better performance compared
to the SVM-based approach. In contrast, the LSTM model
demonstrated superior performance when compared to both
the HMM and SVM models that employed handcrafted fea-
tures, effectively extracting features automatically. Moreover,
the LSTM network also incorporated temporal dependencies in
sequential data. Leveraging the proposed attention mechanism
and feature-learning techniques, the attention-based LSTM
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(a) Walking activity state samples in
HMM model
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(b) In-place activity state samples in
HMM model
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(c) No activity state samples in HMM
model

Wi-Watch WiSH CARM MoSense
40

50

60

70

80

90

100

A
cc

ur
ac

y

Walking Activity In-place Activity No Activity

Baseline model

(d) Performance comparison with base-
line methods

Fig. 14: Matching results of the test sample in HMM model.
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(d) Attention-based LSTM

Fig. 15: The confusion matrix of in-place activity recognition with four methods. The labels numbered 1 through 6 correspond
to the following actions: using radar, using binoculars, using smartphones, reading, driving, and drinking.

TABLE IV: The time overhead of the four activity recognition
methods during the training and testing stages.

Time(s) SVM HMM LSTM Attention-based
LSTM

Training (s)
(2160 samples) 144.12 230.56 5168.86 8012.60

Testing (s)
(340 samples) 1.72 2.85 4.39 6.22

model achieved the highest performance in accurately recog-
nizing all six OOW activities. The activities were assigned
labels 1-6, respectively, as follows: ”Using radar,” ”Using
binoculars,” ”Using smartphone,” ”Reading,” ”Steering,” and
”Drinking.” The average accuracy of the four aforementioned
methods in the in-place activity recognition task was com-
pared. The confusion matrix depicting the results of the four
methods is presented in Fig. 15. Notably, the attention-based
LSTM model attained an impressive overall average accuracy
of 94%. Table IV represents the time expenditures on the
training and testing phases for both the attention-based LSTM
model used in our study and the alternative models explored
for comparison.

F. Efficiency and Scalability

1) Impact of ship sailing speed: Given that a moving ship
environment differs significantly from stationary land environ-
ments, the motion and dynamics of a ship may impact the
system’s recognition ability. An increase in ship sailing speed
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(b) Activity state recognition.

Fig. 16: Impact of ship sailing speed.

leads to more intense ship vibration, introducing more noise
to the WiFi signal. To evaluate the robustness of Wi-Watch
at different ship sailing speeds, we collected CSI datasets
at different ship speeds and used 5-fold cross-validation to
test the average accuracy of Wi-Watch in in-place activity
recognition and activity state recognition, as shown in Fig. 16.
We use a ship-mounted GPS satellite navigator to obtain the
current sailing speed of the ship. The experimental results
revealed that the system achieved the highest accuracy in both
in-place activity recognition and activity state recognition, sur-
passing 95.32% when the ship was anchored. With an increase
in a ship sailing average speed from 22 km/h to 27 km/h,
the average accuracy rate of Wi-Watch’s 6 OOW in-place
activity recognition decreased from 94.2% to 86.1%, while the
average accuracy rate of activity state recognition decreased
from 94.15% to 88.14%. The most significant decrease was
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Fig. 17: Impact of training set size.
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Fig. 18: Impact of the transmission rate.

observed in the accuracy of in-place activity state recognition,
which decreased by approximately 12%. This is because the
in-place activity involves small body movements, resulting
in less variation in the DFS signals captured by WiFi. The
recognition of in-place activity DFS features by Wi-Watch is
interfered with when the signal noise level increases.

2) Impact of training set size: The performance of the
learning-based method is strongly correlated with the size of
the training set. It is necessary to study the impact of training
size on system performance. Here we define the training
size as the number of training samples for each activity.
As shown in Fig. 17a, our system can achieve consistently
high accuracy on in-place activity recognition with different
training sizes. Especially, our system maintains over 94%
accuracy on 6 OOW in-place activities recognition even with
the training size as small as 300. Additionally, we evaluated
the impact of training set size on the HMM-based activity state
determination model. We demonstrate the average accuracy of
the model in recognizing the three types of activity states under
different training set sizes, as shown in Fig. 17b. We gradually
increased the number of training set samples from 50 to 200,
and the average accuracy of the model in recognizing the three
activity states increased from 83.23% to 94.33%.

3) Impact of transmission rates: Another important factor
that influences the recognition accuracy of Wi-Watch is the
CSI sampling rate. The use of Wi-Watch for In-place activity
recognition necessitates packet transmission, which may inter-
fere with normal communication flow. Therefore, we evaluated
the performance of Wi-Watch with 5-fold cross-validation at
different CSI transmission rates. We collect CSI measurements
at the initial transmission rate of 1,000 packets/s and down-
sample the CSI series to 500 packets/s, 200 packets/s, 100
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Fig. 19: Impact of training diversity.

packets/s, 50 packets/s, 20 packets/s, and 10 packets/s. The
evaluation results are shown in Fig. 18a. When the sampling
rate drops from 1,000 packets/s to 100 packets/s, the average
in-place activities recognition accuracy decreases from 94.21%
to 88.16%. When the sampling rate reduces to 10 packets/s, the
average recognition accuracy decreases to 65.21%. Based on
these results, the sampling rate should be no larger than 100
packets/s to get high recognition accuracy. Additionally, we
evaluated the impact of transmission rate on the performance
of the activity state determination model, and we demonstrate
the accuracy of the three types of activity recognition at
different transmission rates. As shown in Fig. 18b, when the
transmission rate is greater than 200 packets/s, the accuracy of
the cross-validation is above 94%. Although the transmission
rate gradually increases to 1,000 packets/s, the accuracy of
activity state recognition remains relatively constant, and the
system performance is no longer affected by the transmission
rate. Therefore, it can be concluded that the accuracy of Wi-
Watch increases when the CSI is calculated with a higher
transmission rate, but the increase is not significant beyond
the sampling rate of 200 packets/s.

4) Impact of training diversity: We recognize that the inclu-
sion of diverse experiments assistants in the training dataset
can influence the performance and generalization ability of
the Wi-Watch system. We vary the number of experimental
assistants from 1 to 8, ensuring a range of individuals with
different characteristics are included in the training data. We
then use data from a new person, who was not part of the
training dataset, to test the performance of the Wi-Watch
system. Fig. 19a shows that the 6 OOW in-place activi-
ties’ average recognition accuracy decreases from 94.13% to
72.16% when the number of people for training varies from
1 to 8. This indicates that as the number of training sets
increases, Wi-Watch learns more generalized activity features
that are independent of specific individuals. Additionally, we
evaluated how the diversity of training sets impacts the activity
state recognition task, as demonstrated in Fig. 19b. Despite
increasing the number of individuals from 1 to 5, the accuracy
of activity state recognition did not improve significantly.
This is due to the significant differences in the AoA-Doppler
features produced by various active states, making it easy for
the model to recognize the differences between them.

5) Impact the number of hidden states: Choosing the
appropriate number of hidden states during HMM-based OOW
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Fig. 20: Performance of the activity state determination model in different parameters.

TABLE V: The score of the model under different numbers
of hidden state.

HMM model 3 4 5 6 7 8 9 10

λω -64.7 -55.7 -44.4 -39.7 -40.1 -41.3 -43.5 -42.5
λp -99.7 -88.4 -81.5 -75.8 -70.3 -72.7 -71.4 -73.9
λs -83.4 -76.3 -61.9 -63.3 -62.2 -64.9 -65.1 -62.4

activity state recognition training is crucial as it directly
impacts both performance efficiency and recognition accuracy.
The choice of the number of states and the training of each
model is performed using the Baum-Welch algorithm and the
cross-validation principle: the optimal number of states and the
associated optimal HMMs parameters are those yielding the
highest likelihood on the validation set. We randomly selected
900 OOW on-duty activity samples representing the three on-
duty activity states (walking activity, in-place activity, and no
activity) in the dataset (Note that these activity data were
randomly selected from different experimental assistants). To
increase the accuracy of the recognition model and avoid
gaining training costs, we used 3 to 10 state numbers to succes-
sively train each on-duty state. We ran 5-fold cross-validation
on 900 active samples to ensure that the optimal number of
hidden states could be determined. The average evaluation
scores of the model posterior probabilities were calculated
using different hidden states. Table V shows the average HMM
scores obtained for the on-duty activity states (i.e., walking,
in-place activity, and remaining still) for different numbers of
hidden states. The HMM parameters of the three duty states,
state, and no-action states, are represented by λw, λp, and
λs, respectively. The higher the score, the more accurate the
model recognition under the given number of hidden states. It
was evident that, for the six hidden states, the walking state
was recognized the most accurately by the model. The in-place
and no-activity state models had the optimal number of hidden
states set to 7 and 5, respectively. To present the relationship
between the model accuracy and the number of hidden states
intuitively, histograms for models with different numbers of
hidden states are plotted for the three types of activity states,
as shown in Fig. 20a 20b 20c. The results show that the
local optimal output probability increases with the increase
of state numbers, and the model fit becomes increasingly
higher. When the local optimal probability no longer increases
significantly, the optimal HMM model is determined, with the
corresponding number of states being the optimal hidden state
number. Fig. 20d 20e 20f shows the specific training iteration
process for each type of activity state to obtain the optimal

number of hidden states in corresponding models.

VI. DISCUSSIONS

A. Presence of Multiple People

The current system is explicitly designed and tested for
scenarios involving a single person. It should be noted that
this setup aligns with the intended usage scenario of the Wi-
Watch, where each Officer of the Watch (OOW) is assigned
specific tasks within their designated responsibility area on
the bridge. Generally, similar to most current WiFi-based
sensing methods, our system currently handles only single-
person situations because of the complexities of discerning
signals reflected from multiple individuals within the 20 MHz
bandwidth of WiFi signals. Nevertheless, with the progression
of wireless communication technology, upcoming protocols
offering higher frequencies and larger bandwidths, such as
IEEE 802.11ay [49] [50], are anticipated to address this
issue. We have already conducted preliminary experiments on
multi-person activity recognition using WiFi signals with a
bandwidth of 160 MHz, compliant with the IEEE 802.11ax
protocol. These experiments have yielded promising results
and show the potential to overcome the limitations of scenarios
involving a single person.

B. Device Deployment

Displacement of devices acts as a main factor limiting
the recognition accuracy of the Wi-Watch. On one hand, the
human reflection signal is much weaker than the LoS signal
due to the longer propagation distance and additional reflection
loss. Therefore, in order to increase the reflection area of
humans in the experiment, we placed the antenna 1m above
the ground. On the other hand, Wi-Watch utilizes extracted
AoA-Doppler information as input to the activity recognition
model, and any changes in the relative position between the
transceiver and the person can result in variations in AoA-
Doppler pairs.

C. Environment Changes

Environmental changes can have a substantial impact on
the accuracy of our system. After the completion of ship
construction, the placement of equipment inside the bridge
remains relatively stable, resulting in minimal alterations to
the bridge environment. However, one potential source of
environmental change is the significant swaying of the ship
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caused by wind and waves, which can lead to drastic fluc-
tuations in the indoor channel, and even force individuals to
move. The adverse impact of such conditions on the accuracy
of our system is foreseeable. It should be noted that our
current experiments have been conducted in inland waters
characterized by relatively calm conditions. In the future,
we intend to conduct experiments on ocean-going vessels
to investigate the suitability of WiFi sensing technology in
maritime environments that pose greater challenges.

D. Computational and Implementation Complexity
First, the Wi-Watch system is more complex compared to

most existing WiFi-based activity recognition systems. This is
because the Wi-Watch system needs to counteract the adverse
effects caused by the low signal-to-noise ratio environment
on recognition. Therefore, a series of data processing steps
have been performed, resulting in our system being more
complex and computationally expensive. Second, our system
requires fewer parameters to be trained compared to vision-
based behavior recognition methods. Vision-based methods
use frameworks such as CNN-LSTM [51], GCN [52], and
Transformer [53] to learn spatial and temporal patterns, which
require millions of parameters. Our in-place activities recog-
nition task uses a basic attention-based LSTM model, which
requires 169,606 trainable parameters. Therefore, our model
has a lower computational and implementation complexity
compared to state-of-the-art vision-based behavior recogni-
tion models. With regard to the system’s response time, the
time consumption of our model has mainly been attributed
to CSI preprocessing, the 2D-MUSIC algorithm, foreground
extraction, and in-place activity recognition. According to our
tests, when the transmission rate is 200 packets/s, the system’s
response time is 0.83 seconds. Given the need for vigilance
evaluation during ship driving, this response speed is deemed
acceptable.

VII. CONCLUSION

We present Wi-Watch, an innovative system that lever-
ages commercial off-the-shelf WiFi devices to enable activity
recognition and vigilance detection for ship-bridge watch-
keeping officers. To realize this system, we first propose a
novel signal path parameter estimation approach based on
the CSI path model and 2D-MUSIC. To mitigate the noise
introduced by ship vibrations in the WiFi signal, we introduce
a sophisticated foreground extraction method that effectively
separates signals reflected by the human body from those
reflected by environmental objects. Subsequently, we introduce
CSI velocity and activity models to recognize watchkeeping
states and activities accurately. Lastly, we employ an advanced
vigilance estimation model based on the duration of low-
vigilance states to evaluate the levels of vigilance exhibited
by watchkeeping officers during their shifts. The experimental
results validate the robustness of our system, showcasing its
ability to effectively mitigate the impact of low signal-to-
noise ratio ship environments on WiFi signals. Our system
demonstrates exceptional performance in accurately identify-
ing watchkeeping states and activities and providing reliable
vigilance level assessments.

Anticipating future research scopes, we delineate two en-
couraging trajectories. In our research plan, the main objective
is the development of Wi-Watch, which is based on the
advanced IEEE 802.11ay protocol. The superior multipath
resolution and Doppler frequency resolution capabilities that
this protocol offers are set to considerably enhance Wi-Watch’s
capacity for discerning the actions of numerous individuals and
detecting subtle movements. Additionally, though our present
experiments are confined to inland vessels, we anticipate
widening the scope to maritime vessels as a strategy to
understand potential challenges unique to that domain.
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