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MoLoc: Unsupervised Fingerprint Roaming for
Device-free Indoor Localization in a Mobile Ship

Environment
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Abstract—Device-free indoor localization may play a critical
role in improving passengers’ safety in large vessels, particularly
for scenarios without equipped radios. However, due to dynamic
internal and external influences from the sailing ship such
as changing sailing speed, existing localization systems suffer
huge accuracy degradation in a mobile ship environment. The
challenges are mainly due to rich and arbitrary ship motions
and the resulting complicated impacts on the indoor wireless
channels. To address the challenges, in this paper, we first
propose a ship motion descriptor to extract discriminative latent
representation from complex ship motions by leveraging deep-
learning techniques. Based on this representation, we then design
a novel fingerprint roaming model, i.e., MoLoc, to automatically
learn the predictive fingerprint variation pattern and transfer the
online fingerprint measurement to adapt to dynamic ship motions
in real-time. Furthermore, an unsupervised learning strategy is
proposed to train the fingerprint roaming model using unlabelled
onboard collected data which does not incur any labor costs.
We have implemented and extensively evaluated MoLoc on real-
world cruise ships, where experimental results demonstrate that
MoLoc improves localization accuracy from 63.2% to 92.8%
compared to the state-of-the-art localization methods including
Pilot, LiFS, SpotFi, and AutoFi, while achieving a mean error of
0.68m.

Index Terms—Passive human localization, Mobile ship envi-
ronment, Unsupervised learning

I. INTRODUCTION

Amongst all the operational considerations of the modern
maritime industry, passengers’ safety is the most critical
issue ever since the RMS Titanic tragedy in 1912. Real
cases that have happened recently (e.g., the 2014 Sewol
Ferry Disaster [1]) continue to reveal the tragic consequences
of chaotic evacuation and rescue on large vessels, which
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Fig. 1. State-of-the-art localization system evaluation on an actual ship.

lacks appropriate coordination of passengers and crew. In
the event of such catastrophes, accurate passive device-free
human localization systems, which localize the individuals not
equipped with a radio device, have been proved to be critical
in the associated rescue/evacuation operations and improving
passengers safety [2].

Unfortunately, while there have been significant advances in
passive human localization, an accurate device-free localiza-
tion system for such a mobile ship environment is still absent.
The recent progress of passive localization mainly focuses
on WiFi-based techniques [3] [4] [5] [6] [7] for its ubiqui-
tous infrastructure and being less privacy intrusive compared
to video monitoring. However, the state-of-the-art methods,
either based on fine-grained channel state information (CSI)
or coarse-grained received signal strength (RSS), are facing
significant shortcomings in a mobile ship environment due
to their vulnerability coping with environmental changes [8]
[9]. Contrast to general static scenarios (e.g. office buildings),
the mobile ship indoor environment may exhibit immediate,
dynamic and unpredictable changes during voyages [10] [11].
The ship is subject to inevitable dynamic (elastic) hull de-
formations caused by the internal and external stress from the
load, waves, and engines during its voyages [12] [13]. Through
our extensive experiments conducted on a real-world cruise
ship, five state-of-the-art localization systems, i.e., Pilot [5],
LiFS [6], SpotFi [14], AutoFi [8] and PinLoc [15], are facing
a huge accuracy degradation when ship sets sailing as shown
in Fig. 1 (see Sec. VI for experimental details). Existing
localization solutions, either based on angle-of-arrive (AoA),
fingerprint or attenuation model, all suffer from ship sailing-
induced impacts.
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Challenges. To achieve high-precision WiFi-based passive
human localization in a sailing ship, we observe from extensive
real-world experiments that the mobility of the ship represents
one of the main obstacles and brings three hard challenges: (1)
Due to the richness and dynamics of outdoor sailing factors
which may introduce environmental changes (such as sailing
speed, acceleration motion, turning motion, weather condition
and altitude), analyzing and modeling the impact of each
factor is inefficient and impractical. (2) To adapt the existing
localization methods in a dynamic mobile ship environment, it
requires exploring the model parameters at all possible sailing
conditions, which is (if ever possible) labor-intensive and time-
consuming and may cause unaffordable system deployment
cost. (3) For capturing the slight changes of hull deformation
in such environment, the resolution of CSI measurement using
commercial WiFi infrastructures is limited by its bandwidth,
which would bring uncertainty of channel measurement for
the data analysis. These three technical challenges should be
carefully addressed to achieve the high resolution and stable
passive localization in a mobile environment.

Contributions. To address these challenges, in this paper,
we propose MoLoc, an online deep learning framework which
develops a practical solution for passive human localization
in the mobile ship environment. MoLoc is able to learn the
motion-related CSI variation pattern using unlabelled CSI data
and automatically transfer the online CSI fingerprint to adapt
to dynamic mobile ship environment. To achieve this goal,
the design of MoLoc contains the following key components.
First, facing the multiple external environment factors, we
propose a motion descriptor using convolutional autoencoder
technique to find latent representations of complex ship sailing
conditions and avoid individually modeling each factor’s im-
pact. Second, to overcome the CSI resolution limitation, we
propose CSI embedding layer to project CSI measurements
into a higher-dimensional sparse space to process the slight
changes of signal propagation using deep learning technique.
Third, a Long Short-Term Memory (LSTM) based fingerprint
roaming model is proposed to learn the predictive fingerprint
variation introduced by ship motions and intelligently transfer
the online fingerprints to adapt to the mobile environment.
Furthermore, for the data collection cost consideration, we
propose an unsupervised learning strategy to utilize unlabelled
CSI measurements and ship onboard sensors to automatically
train the roaming model, which can significantly reduce the
overall system deployment cost.

We have implemented a prototype MoLoc system using
COTS Intel 5300 cards with existing onboard WiFi infras-
tructures and deployed onboard an actual passenger ship.
In the current MoLoc, the sensors data are collected using
smartphones deployed in the ship, and we use a desktop
with Intel CPU and Nvidia GPU for neural network training.
We conduct experiments in indoor space with dynamic/static
users on a real-world cruise ship. Based on our evaluations,
compared to state-of-the-art localization methods including
Pilot, LiFS, SpotFi, and AutoFi, MoLoc improves localization
accuracy from 63.2% to 92.85% and achieves a mean error of
0.68m in dynamic ship sailing conditions.
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Fig. 2. Illustrate how ship deformation affect wireless signals.

II. PRACTICAL CHALLENGES

MoLoc addresses significant drawbacks of current local-
ization techniques with commercial wireless infrastructure
applied in a mobile ship environment. Aiming to overcome the
mobile environmental effects, in the following, we demonstrate
three practical challenges for building a ubiquitous WiFi-based
indoor localization system in a ship environment.

Arbitrary Ship Motions. WiFi-based indoor localization
techniques mostly rely on exploring the slight difference of
signal propagation, reflection and absorption introduced by the
existence of the people. Thus, these methods are vulnerable
to the subtle environmental changes, which may confuse the
CSI measurements caused by the localized targets. However,
based on our observation, the ship deformation caused by
ship motions can significantly influence the indoor wireless
signal propagation as shown in Fig. 2. When voyaging, the
ship’s hull is subject to inevitable deformations, including
static angular deformation and dynamic angular deformation,
caused by the external stress of loads, waves, and external
temperature changes [12]. The ship static angular deformations
can amount to 1◦ due to the redistribution of freight and fuel.
The non-uniform heating of different ship parts under the sun
also may lead to up to 1◦ change. As for the dynamic angular
deformations, they are caused by hull motion, wave impact,
helm steering, and can be as high as 1◦–1.5◦ [?] [13].

Owing to these deformations of the sailing ship, the angular
position of peripheral equipment (radar antennas, WiFi anten-
nas) may differ significantly from the original devices setup
parameters. Therefore, ship environmental effects from hull
deformation related to its various sailing motions including
different speed, accelerations, rotation and weather during its
voyage. Meanwhile, the ship motions during the different sail-
ing conditions are remarkably arbitrary due to the ship driving
operations are complex and mainly based on the crew’s experi-
ence. For instance, when a sailing ship detects an approaching
ship on its way, avoiding actions would be a complex and
experience-depended process. Before taking any actions, the
encounter situation, safety distance, visibility, counterpart’s
intentions, weather conditions are considered by the crew.
Operators then determine the ship avoidance actions, including
turning amplitude, turning time and avoidance ranges, mostly
according to their experience. Therefore, the sailing condition
and ship motions are diverse and unpredictable during its
voyages. It is extremely hard to find and quantify their motions
to cover all rich sailing states.
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Fig. 3. CSI profile collected during ship voyages.

Diverse Mobility Impacts. Fig. 3 shows an example of
the CSI sequences collected in a ship room during its voyage.
As can be seen, when the ship sails smoothly without any
acceleration or turning, the CSI sequence holds quite stable.
However, after the ship encounter waves, which shook the
ship hull and lead to the accelerations changes of X-axis
and Y-axis (under stress), CSI measurements significantly
varies accordingly. The variation shows a close correlation
with ship sailing conditions and introduces the unacceptable
huge interference to the current wireless indoor localization
systems. In this case, due to the wide variety of ship motions,
modeling all patterns of mobile ship environmental impact on
indoor CSI behaviors in a human-depended way is unrealistic.
Exploring all possible sailing conditions is (if ever possible)
labor-intensive and time-consuming, which cause unaffordable
system deployment cost in any practical settings.

CSI Resolution Limitation. CSI is fine-grained physical
layer information that describes wireless channel at frequency
domain which can be denoted by

H(fi) = |H(fi)|ejsin(∠H(fi)) (1)

where fi is the central frequency of subcarriers (i = 1, ...,M ),
|H(fi)| denotes its amplitude and ∠H(fi) denotes the phase.
To explore the CSI variation reason in the mobile ship, we
could physically analysis the multipath changes introduced by
hull deformation as shown in Fig. 2. It can be seen that slight
hull deformation would change the locations of the transmitter
and receiver, which alter the multipaths, even the line-of-
sight path in the environment. To quantify these changes,
theoretically, CSI can be converted through IFFT (Inverse
Fast Fourier Transform) to time-domain power delay profile,
which can characterize the multipath channel. However, due
to the bandwidth limitation on commodity WiFi NICs, the
time resolution of the derived power delay is incapable to
distinguish such subtle multipath changes. For the widely used
20MHz bandwidth, the resolution is 1/20MHz = 50ns, which
leads to 15m resolution for detecting the path lengths [16]. For
a finer-grained hull deformation, the needed bandwidth may
not impossible for current commodity WiFi NICs.
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III. SYSTEM OVERVIEW

The focus of our work is on enabling WiFi-based device-
free indoor localization (1) to work efficiently in the mobile
ship environment by considering a set of ship motion impact
factors, and (2) to achieve the fingerprint transfer without
gaining any human effort by utilizing unlabeled WiFi collected
data. As shown in Fig. 4, MoLoc consists of three compo-
nents: mobility descriptor, fingerprint roaming and fingerprint
localization technique.

• Motion Descriptor: Facing the richness, dynamics, and
unpredictability of the ship motion, we propose a motion
descriptor for extracting discriminative latent represen-
tation of diverse ship motions from multiple shipborne
sensors data without prior knowledge of the experts.

• Fingerprint Roaming: To avoid labor-intensive collect-
ing and annotating CSI variation data, a fingerprint roam-
ing model, which is a well-designed neural network with
an unsupervised learning strategy, is proposed to learn
from the massive unlabelled CSI data combined with ship
sensors and to transfer the impacted fingerprints to adapt
to the pre-trained model. In addition, a CSI embedding
layer is designed to overcome the resolution issue.

• Localization Model: Based on our fingerprint roaming
model, we propose an online fingerprint inference method
and build a device-free human indoor localization model
by considering the multiple factors of ship motion states
and the real-time CSI measurements.

The details of CSI measurement and fingerprint database
follow the regular practice in academia (e.g., [5]). Thus, we
skip these and focus on the new designs in MoLoc: the motion
descriptor and the fingerprint roaming model.

IV. MOBILITY DESCRIPTOR

As mentioned above, the system should be capable of
considering arbitrary ship motion which related to multiple
series of sensors data. To achieve this goal, we are looking
for a ship sailing state extraction method to automatically
classify ship sensor information into various ship motions
and represent them by low dimensional vectors called motion
descriptors. Inspired by the vector space basis from linear
algebra, we propose the concept of ship motion basis to
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capture the discriminative sensors features and an unsuper-
vised autoencoder machine to obtain these motion basis. We
introduce each step in detail as follows.

A. Data Collection

The first step is to collect the ship motions-related sensors
data from real-world ships. In this work, we deployed several
sensors (e.g., accelerometer, gyroscope, magnetometer and
compass) and WiFi infrastructures in an inland cruise ship
namely “Yangze 7” to simultaneously collect the on-line WiFi
channel data and ship motion information. We considered a
set of motion factors of a mobile ship environment: 1) day
time, 2) location coordinates, 3) speed, 4) 3-axis acceleration,
5) compass, 6) weather (barometric pressure and temperature)
and 7) engine state (measured by engine sound). The CSI is
utilized to measure the channel properties of the communica-
tion link in the ship indoor environment. We record these data
in “Yangze 7” during its five voyages (25 days in total) and
pack them into a matrix structure for next learning procedure.

Here, the total n packets of m subcarriers CSIs col-
lected in an empty room with the period of 100 ms are
combined into a CSI matrix H = [H1, H2, . . . ,Hn]. The
corresponding related ship sensors information: brightness
B = [b1, b2, ..., bn]T , ship speed V = [v1, v2, ..., vn]T , 3-axis
acceleration A = [Ax, Ay, Az]

T , ship location coordinates
L = [l1, l2, ..., ln]T , magnetism measured by magnetometer
M = [m1,m2, ...,mn]T , temperature of indoor environment
T = [t1, t2, ..., tn]T and air pressure P = [p1, p2, ..., pn]T are
represent to a matrix X:

X = [B, V,Ax, Ay, Az, L,H,M, T, P ] (2)

Among them, the sparser sensors data with lower sampling
rates are preprocessed with interpolation to align with CSI
timestamps. Meanwhile, the outliers caused by sensor internal
errors are also removed with an outlier filter.

B. Factors Selection

Next, before finding the ship motion basis from the packed
diverse ship sensors data, we measure the correlation between
motion factors and CSI variation to select the primary factors
and reduce trivial randomness from the world. Here, we adopt
principal components analysis (PCA) to find the principal
components of CSI variation and Pearson correlation coef-
ficient (PCC) to obtain the main influence factors.

Since CSI is composed of power attenuation from m sub-
carriers, PCA can be utilized to find the lower-dimensional
projection that best represents the variation of CSI data set.
We first standardize the CSI matrix H as Ĥ to ensure that all
the subcarriers information are treated on the same scale. Then
the PCA transformation basis A can be obtained by selecting
the maximum-variance directions as follows:

Aopt = arg max
A
|ATΣA| (3)

where Σ is the covariance matrix of all vectors of Ĥ. The
solution A = [e1, e2, ..., em] is in fact a subset of eigenvectors
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Fig. 5. Convolutional Autoencoder Machine.

of Σ, where ei is the i-th eigenvector obtained from the eigen-
decomposition of the matrix Σ. The first two principal com-
ponents with the highest eigenvalues are selected to combine
as a transformation matrix Ap = [e1, e2] to calculate the 2-D
projection Yp by

Yp = ATp Ĥ (4)

where Yp is a n×2 matrix that contains most of information of
Ĥ. Based on the projection Yp, PCC is utilized to measure the
correlation between each sensor factor with the CSI variation
Yp. After normalizing and outlier filtering the sensors data to
X̂ , Pearson correlation coefficients ρ can be obtained by:

ρXi,Yi
=

E(X̂i − X̄i)(Yi − Ȳi)
σXi

σYi

(5)

where Yi denotes the i-th principle projection of CSI and
Xi ∈ {B, V,Ax, Ay, Az, L,H,M, T, P} is the ship sensors
data. X̄ and Ȳ represent the mean value of each sensor vector
respectively. The value of ρ is between [−1, 1], which denotes
a positive or negative correlation. The sensors factors with the
highest correlation coefficient can then be selected for the next
motion basis learning.

C. Motion Learning

To learn the latent representation of ship motions, in this
part, we utilize Convolutional Auto-Encoder (CAE) [17] to
find the ship motion basis from the real-world sensors data
through unsupervised learning. CAE is a neural network for
“encoder” and “decoder” data with convolutional layers to
discover localized features that repeat themselves all over
the input. In the proposed method, we use multi-layer ar-
chitecture to extract features as illustrated in Fig. 5. The
network architecture consists of three basic building blocks,
including a convolutional layer, a max-pooling layer, and a
dense-connected layer, to be stacked as needed.

The selected features Xi are formed as input matrix I with
the size of DT ×DK , where DT is the length of time window,
also refers to the number of samples, and DK is the number of
sensor axis (e.g. 4 axes is shown in Fig. 5). In our case, DT =
60 to represent 6 seconds for a reasonable period of real-world
ship motion. In the convolution layer, 2D kernels are used
as the filters, followed by a rectified linear unit (ReLU) to
introduce nonlinearity. For the input matrix I , M convolution
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kernels Wm
c , whose size are nW × nW , are used to map the

same size units from input layer to M channels in max-pooling
layer:

hmc = σc(I ∗Wm
c + bc)

σc(x) = max(0, x)
(6)

where the bc is bias, σc is a ReLU function for activation,
and ∗ denotes the 2D convolution. For multi-factor nature
of ship motion, a max-pooling layer [18] is used to improve
filter selectivity, as the activation of each neuron in the latent
representation is determined by the matching features and
input field over the region of interest. Max-pooling layer
down-samples hc = [h1c , h

2
c , . . . , h

M
c ] to hm by a constant

kernel with the size of 1 × np, which taking the maximum
value over none overlapping sub-regions, and shrink the length
into (DT − nW )/np. Before the last hidden layer, a dense-
connected layer with weights Wd follows to linear combine
each row of down-sampled hm and through a sigmoid function
into nh length of hidden layer states hv:

hv = σd(hm ∗Wd + bd)

σd(x) =
1

1 + e−x
(7)

Based on the principles of auto-encoder models, followed
by “encode” phase, where the multiple sensors I have trans-
formed into lower description hv , the “decode” phase is
then used to reconstruct the decoded hv back to I by a
reverse mapping. The reconstruction procedure includes re-
verse layers, up-sampling layer as shown in Fig. 5. We can
obtain the reconstruction by yd =

∑
k hv ∗ W̃d + ad and

y =
∑
k yc ∗ W̃c + ac, where W̃d and W̃c are the reverse

of Wd and Wc. For CAE, the training goal is to learn the
convolutional kernels Wc and dense layer weight Wd that can
extract the latent representation information of the data I . With
little information lost of the lower-dimensional description,
hv can be reconstructed to the original I . In other words, to
train such a model, the learning process is described simply as
minimizing a loss function of the mean squared error (MSE)
of reconstructed y and input I:

E(Wc,Wd) =
1

2n

n∑
i=1

(Ii − yi)2 (8)

where n is total samples of CAE training. Therefore, an unsu-
pervised training can be achieved by standard backpropagation
method [19], which we skip for the length consideration. Just
as for standard networks to compute the gradient of the error
function with respect to the parameters. Based on the trained
encoder network, the motion basis can be obtained as the
“encoder” model of CAE with the parameters of convolution
kernels Wc and dense layer weights Wd.

After the motion basis is learned, the descriptor v of ship
motion can be obtained from an input ship sensors data matrix
I and denoted as

v = CAE Wc,Wd
(I) (9)

Afterwards, the desired motion descriptor v can be used for
next fingerprint roaming model.

V. FINGERPRINTS ROAMING & LOCALIZATION

Based on the proposed motion descriptor, we can then
explore the pattern between CSI profile variation and diverse
ship motions. However, to construct a CSI transfer model
for pre-built fingerprint database using supervised learning,
it is too expensive to collect fingerprints variation data from
all locations during all ship motions period. To overcome
this challenge, in this section, we propose an LSTM-based
CSI transfer learning model with an unsupervised learning
strategy, namely fingerprint roaming, to automatically learn the
transferred fingerprint map for accommodating all motions of
a sailing ship. At last, a fingerprint-based localization method
is introduced.

A. CSI Embedding

As described in Sec. II, the hull deformation introduced
by ship motions includes two kinds of effects may apply on
multipaths: some multipaths are enhanced or weaken and some
are delayed or forward. We take Fig. 2(a) as an example, as
a wall imperceptibly deformed when the ship sets sailing,
Path2 was replaced by new Path2′ as the shape of the
reflection surface deformed. Since the new signal of Path2′

propagates through a longer distance, the path power would
be weakened and delayed compared to the previous situation.
This would bring a constant magnitude scaling and a time
delay shift on the original power delay profile. However,
for the widely used 20MHz bandwidth in 802.11n, the time
resolution of the derived power delay profile from CSI is 50ns.
The influenced signal power would be confused with the power
of its following signals as shown in Fig. 6.

To address this problem, we propose a CSI embedding
method which can decompose and reconstruct WiFi path signal
in high time resolution using deep learning technique. The
embedding layer and reconstruction layer are shown in Fig. 7.
In this layer, we first convert the CSI profile from frequency-
domain to time-domain by IFFT. Meanwhile, CSI phase error,
e.g., sampling frequency offset and packet boundary detection
error, are removed according to [16]. Then the m dimension
estimated power delay profile are embedded to a Ke × m
dimensional sparse space, where Ke is the number of neurons
connected to one input channel. Similarly, the reconstruction
layer recomposes the power delay profile from the same space
and convert it back to CSI using FFT. In this part, we denote
the weights of CSI embedding layer and reconstruction layer
as We and Wr.

B. LSTM-based Transfer Model

Based on CSI embedding which can decompose and recon-
struct CSI signal, we now propose a deep learning framework
which can capture the signal variation pattern of different
ship motion descriptors and reconstruct the CSI profiles to
adapt to target ship motion. Inspired by recent advances in
deep learning, it is possible to construct a powerful ”end-
to-end” CSI transfer model by maximizing the correct CSI
reconstruction at each ship motion states. Thus, we propose
to directly maximize the probability of the accurate CSI
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reconstruction Hg given the source CSI profile Hs by using
the following formulation:

θ = arg max
θ

∑
(Hg,Hs,δs,g)

log p(Hg|δs,g, Hs; θ) (10)

where θ are the parameters of our model, δ = (vs, vg) denotes
the ship motion change and contains two variables: vs denotes
source ship motion descriptor and vg is target descriptor. Since
Hg represents a CSI profile series during the time window of
vg , its length equals DT according to last section. We can
model the joint probability of the CSI sequence by chain rule:

log p(Hg|δs,g, Hs) =

DT∑
i=0

log p(H(i)
g |δs,g, H(0)

g , · · · , H(i−1)
g )

(11)
To model the sequence p(H

(i)
g |δs,g, H(0)

g , · · · , H(i−1)
g ), it is

common to use recurrent neural network (RNN). Meanwhile,
due to there are two elements in the critical parameter δs,g:
source state vs and target state vg , we adopt LSTM cell [20]
to model this sequence for the similarity that there are two
inner states in an LSTM cell.

A LSTM cell contains a hidden state h, cell state c, and
three gates: forget gate f , input gate i, and output gate o.
The c and h would be initiated with vs and vg . In every step,
input H(t)

g is stacked with previous hidden state ht−1 and
multiply by LSTM weights WL to decide the values of all
gates and variable g. The three gates are used to determine
current inner states ht and ct. Among them, f decides whether
to forget the previous state ct−1, i decides whether to read new

input H(t+1)
g and determine the current cell state ct with g.

At the end, the current state ht is calculated by o and ct. The
definition of the LSTM cell update is as follows:

i
f
o
g

 =


σL
σL
σL

tanh

WL

(
ht−1

H
(t)
g

)
(12)

ct = f � ct−1 + i� g (13)

ht = o� tanh(ct) (14)

Here, �, σL and tanh represent the element-wise multi-
plication, logistic sigmoid activation and hyperbolic tangent
function respectively. WL is weights of LSTM cell which is for
CSI sequence transfer. Such two inner states RNN cell makes it
possible in our system to model the mobile environment phases
changing and learn such variation patterns of CSI profile at
each environment states transition automatically.

C. Fingerprints Roaming

In this part, we propose an unsupervised learning strategy
to train the fingerprint roaming model utilizing unlabelled CSI
measurements in the ship with their corresponding ship sensors
information. In MoLoc, a CSI fingerprint Fl is defined as a
combination of a location label and a set of CSI profile when
a person is at location l:

Fl = {[H1, H2, · · · , HN ]; l} (15)

Here, a total of N packets of CSI profile are recorded in a
fingerprint. For the human localization, we select L locations
in the interested area and record CSI fingerprint at each
location to build a fingerprint map F = (F0, · · · , FL). In the
measurement, if we keep monitoring the variation of Fl during
the ship voyage and record the corresponding ship sensors data
Xk. The records can be denoted by a fingerprint profile Gl
in mobile ship environment:

Gl = {(F 0
l , X0), (F 1

l , X1), · · · , (FKl , XK)} (16)

where F kl is fingerprint when the ship is at motion state of
Xk and K denotes the total number of fingerprint profiles.

Unlabelled Data. In the system running phase, assuming
that the runtime is long enough while passengers stay on
board, we can obtain long-term unlabelled CSI profiles (refers
to the CSI measurements without knowing the human loca-
tion) and the corresponding sensors data, which can cover
all interesting locations and the ship motions either. As an
example, a passenger would roam in the area for the whole
voyage, so the system can collect the unlabelled CSI profiles
which contain all interesting locations {F0, F1, · · · , FL}. For
the voyages are long enough, the collected CSI profile would
cover all ship motions {X0, X1, · · · , XK} either. Meanwhile,
CSI variation caused by human moving can be eliminated by
human moving detector [21]. Combined all this information,
complete fingerprint profiles {G0, G1, · · · , G−L} without hu-
man location can be obtained for our model training.

Unsupervised Learning. MoLoc is trained to predict the
CSI fingerprint changes when ship motion transition from
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Fig. 8. Unsupervised training strategy of fingerprint roaming model.

source motion to target motion. The training strategy is shown
in Fig. 8. To train such model, firstly, the two ship motion
data Xk−1 and Xk are fed to CAE model to obtain two ship
motion descriptors vs and vg , which are directly sent to LSTM
cell as the two initial inner states. Then, the fingerprint F k−1l ,
which correspond to Xk−1, are export to CSI embedding layer
and obtain αk−1 as the input sequence of LSTM. Based on
cell gates, LSTM keeps emitting βk which is in the same
space with αk−1 can be used to estimate the predict CSI
fingerprint by reconstruction layer. The loss function of the
roaming model can be presented as the sum of the negative
log-likelihood of the predicted CSI and F kl (correspond to Xk)
at each step as follows:

vs, vg = CAE(Xk−1, Xk) (17)

αk−1 = WE · F k−1l (18)

βt = LSTMvs,vg (αk−1) (19)

Loss = −
∑
i

logpi(F
k
l −WR · βi)2 (20)

Based on the fingerprint roaming model, the online CSI
fingerprint affected by ship motion can be used to predict the
fingerprint of target ship motion.

D. Online Localization

Aiming to the ship motion of the constructed fingerprint
database {F1, F2, · · · , FL;XM}, the predicted CSI fingerprint
would be obtained by feeding the target ship state XM and
the real-time CSI to the model. We design the device-free
fingerprints matching method based on classifier algorithms,
i.e., support vector machines (SVM), which have widely used

in fingerprint-based localization [22], to predict locations with
fingerprint map. The SVM used here employs a radial basis
function (RBF) kernel to project data to a higher-dimensional
space, where the RBF kernel on two samples x and x′ is
defined as

K(x, x′) = exp(−γ|x− x′|2) (21)

where γ is a kernel size parameters. We utilize open software
LIBSVM tools [23] to train and predict the fingerprints. Based
on the SVM model, Moloc can finally estimate the locations
of new fingerprints obtained by fingerprint roaming.

VI. IMPLEMENTATION & EVALUATION

We have fully implemented and extensively evaluated
MoLoc on two real-world passenger ships. We first describe
our testbeds and data collection methodology and then evaluate
the performance of MoLoc against four state-of-art human
localization techniques.

A. Baseline Methods
We compare MoLoc with four state-of-the-art CSI-based

localization techniques Pilot, SpotFi, LiFS, AutoFi in mobile
ship environment. Among them, Pilot, which is Baseline
method, and LiFS are passive localization techniques for
a static environment using CSI fingerprint or CSI power
fading model to estimate user location. SpotFi is AoA-based
localization method using the direct path AoA estimates and
RSSI measurements from all the WiFi routers. AutoFi is a
state-of-the-art fingerprint-based localization with an online-
calibration module to adapt to the dynamic environment such
as moving furniture. Comparison of these systems with MoLoc
are shown in Table. I. FP and PS stand for fingerprint and
phase shift.
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TABLE I
A COMPARISON OF STATE-OF-THE-ART WORKS FOR PASSIVE WIFI-BASED

LOCALIZATION

Properties LiFS SpotFi Pilot AutoFi MoLoc

Technique Wi-Fi Wi-Fi Wi-Fi Wi-Fi Wi-Fi
Method Attenuation PS/AoA FP FP FP

# (Tx, Rx) (1, 1) (2, 2) (2, 2) (1, 1) (1, 2)
Scenario Static Static Dynamic Dynamic Dynamic
Range 12m 8m 11m 7m 12m

Accuracy 0.7m 0.6m 1.0m 0.8m 0.5m

AP1

DP1 – DP3

(a) CSI collection in room.

Intel 5300 NIC

(b) Intel 5300 NIC.

AP2
Ship motion tracking

(c) Ship motion detection.

Fig. 9. Experiments scenes in passenger ship ‘Yangtze 2’.

B. System Implementation

In the experiments, wireless access points (APs) are TP-
LINK routers, operating on 2.4 GHz band with a bandwidth
of 20 MHz. Detecting points (DPs) are standard ThinkPad T-
series laptops equipped with commercial 802.11n 5300 NICs
and the Linux kernel 2.6.34 operating system. Two iPhone 6s
smartphones with customized software are used for GPS and
ship motion information collection. The system service is set
up on a PC with 3.40GHz Intel E3-1231 CPU and 16GB of
RAM. MoLoc components are implemented with Python. For
the deep neural network, we modify and construct the CAE
and LSTM network with TensorFlow and Keras.

We implemented our experimental testbed to collect ship
motion and CSI data from four rooms, where the sizes are
6.5m×9.4m and 9.7m×13.2m, in two different cruise ships,
dubbed “Yangtze 2” and “Yangtze 7”. In each room, 9 loca-
tions are selected for evaluation. The least distance between
two nearby locations is 0.4m, which yields a reasonable range
for a human to stay. At the experimental rooms, we build CSI
infrastructures which include 2 to 3 DPs and 1 AP to cover
the area as shown in Fig. 9. To create the localization com-
munication, the DPs constantly ping the APs with a frequency
of 10 packets per second (pks). At each location, 300 packets
of CSI profiles with the corresponding ship motions data are
recorded to establish the passive fingerprint map.

Data Record. During two ship voyages, we employed
four volunteers, including both man and woman, as localized
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Fig. 10. CSI-Mobility related factors selection.

objects and collect and their unlabelled CSI data and corre-
sponding sensors data in each room. The volunteers are asked
to repeatedly stay at each location during the voyages with
both sitting and standing activities, as we collected fingerprint
map previously. During a five-day voyage, the cruise ship stops
twice in different ports each day to wait for passengers visiting
ashore. Therefore, we can collect 10 rounds of complete ship-
to-parking data in one voyage and cover all 9 locations.
Totally, we have collected 720 records of unlabelled CSI
fingerprints and their corresponding ship motion data (from
nine physical locations and four people of twenty round). To
objectively evaluate the accuracy of five techniques in mobile
ship environment, we collect our test data set by randomly
choosing 5 different times during a 3-day voyage window to
test the CSI-based localization method performance both in
day and night, as shown in Table. II.

C. System Performance

The overall performance comparisons in three parts in
this section, i.e., motion descriptor, fingerprint roaming, and
localization accuracy.

Motion Descriptor. We first evaluate the feature selection
method and select our interested sensors data in this part.
The results of our case using PCA and PCC are shown in
Fig. 10. Among them, Fig. 10(a) illustrates the projections of
CSI on the first two principal components: e1 and e2. The
compressed CSI profiles are scattered and the histograms of
each component are also shown. The correlation coefficient
of each sensors data with e1 and e2 projections are shown
in Fig. 10(b). As can be seen that the correlation between
acceleration, rotations and speed with CSI are higher than
the other factors like air pressure and brightness. Therefore,

TABLE II
TEST DATA SET OF CSI COLLECTION UNDER DIFFERENT TIME.

Set Test date Time Ship speed
1 May 28, 2019 (Day 1) 6:00 PM 0 km/h
2 May 29, 2019 (Day 2) 9:31 AM 21.2 km/h
3 May 29, 2019 (Day 2) 2:05 AM 6.3 km/h
4 May 30, 2018 (Day 3) 12:20 PM 5.6 km/h
5 May 30, 2018 (Day 3) 4:34 PM 9.2 km/h
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Fig. 11. Raw ship sensors data and motion descriptor analysis.

these three most related sensors information of ship motion
are selected for our mobility descriptor.

Then, based on the observation, the motion descriptor
is performed to extract the latent representation from ship
acceleration, rotation and speed. In our case, the raw data
of three ship motion, i.e., anchor, acceleration, and rotation,
and the extracted motion descriptor are plotted in Fig. 11.
Here we only show acceleration and rotation in each raw
data and use 2-D space to represent three motions descriptors.
It can be observed that the samples of descriptors can form
three clusters, which intuitively demonstrate that the proposed
motion descriptor could represent the multiple ship motion
into a discriminative space.

Fingerprints Roaming. To further illustrate the effec-
tiveness of our fingerprint roaming model, we show how
the environmental changes in a mobile ship degenerate the
CSI fingerprint-based localization performance. As shown in
Fig. 12, the confusion matrices of localization of nine locations
are presented to investigate the nature of fingerprint variation
under ship motions of Set 2. It is demonstrated in Fig. 12(a)
that, when the ship keeps parking at the port, the fingerprint
map remains consistent and make the fingerprint-based local-
ization classification achieves a perfect accuracy. However,
after the ship sets sailing and introduces the interference of
CSI measurements, the fingerprint recognition results tend to
confuse locations. As shown in Fig. 12(b), the localization
results of baseline method mostly are off-diagonal elements
and some of them concentrate around location L4.

For AutoFi system, which calibrates the on-line CSI finger-
print by detecting the fingerprint variation of reference location
L0, that denotes no human in the area, to adapt to the changing
environment. The confusion matrix of AutoFi is shown in
Fig. 12(c). As can be seen that after the fingerprint map is
calibrated, most of the localization results tend to converge to
L8. The results of the fingerprint roaming proposed in MoLoc
is shown in Fig. 12(d). We can clearly see that the localization
results are now placed along the diagonals of the matrices.
This suggests that the fingerprint roaming module is able to

TABLE III
KERNEL NUMBER SELECTION.

Kernel number 8 16 32 64 128 256
error 1.15 0.92 0.64 0.43 0.43 0.33

sparsity 0.54 0.54 0.53 0.53 0.53 0.53

capture the CSI variation pattern according to ship motion and
transfer the CSI fingerprints back to their pre-built state.

Localization Accuracy. The localization performance is
then evaluated by five testing data sets and the results are
presented in Fig. 13. In the anchored ship environment, the
baseline method Pilot achieves high accuracy to over 90% (up
to 93.2%) which is consistent with the result in [5]. However,
as the ship starts sailing, the maximum accuracy of the Pilot
dramatically degrades to 63.2%. The experimental results are
similar to the other two tested techniques, SpotFi and LiFS.
Both methods achieve good performance when the ship is
parked, and the accuracy of the two methods is significantly
reduced (up to 3.7 meters) when the ship is sailing.

To evaluate the accuracy of MoLoc, we show the accuracies
of our system of five test sets. In this experiment, we down-
sample the ship sensors data to 10 Hz to fit CSI measurement
rate and segment the CSI and its corresponding ship motion
every 60 samples, which corresponds to the ship motion of
about 6 seconds, to combine them as the input to our finger-
print roaming model. Here, our system achieves a fingerprint
classification accuracy of 92.85% when the distinction is 0.4m,
while the auto-calibration method AutoFi achieves 71.31%.
The mean localization error of MoLoc in a sailing ship can
achieve 0.68m. This indicates the benefits of our system in
localization accuracy in a mobile environment and can capture
the deformation pattern of different ship motions.

D. Model Analysis

So far, we have described the performance of indoor local-
ization in a mobile ship scenario. In this part, we discuss the
model parameters and efficiency.

Impact of kernel number. It is worth noticing that the
kernel number CAE affects the performance of our motion
descriptor model. Kernel number in CAE would determine
the size of our motion descriptor, and improve the decoding
accuracy. However, the over number of kernels will lead to
extra cost for storage and model training. Here, we choose
two metrics, error and sparsity, to evaluate the CAE model.
The error is defined as the mean square error between all
the encoded and decoded vectors, and the sparsity is the
mean value of all the hidden layer values. According to our
experiment, as shown in Table. III, the error reduces as kernel
number increase. To optimize the kernel number and model
cost, we select 64 kernel as shown in the table that the decrease
of error slows down, which we think sufficient for accurate
ship motion learning.

Efficiency and Scalability. Since the system is designed
with energy efficiency consideration, MoLoc uses only bea-
cons from APs in a single channel. It synchronizes with
the beacon-schedules of these APs and periodically wakes
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Fig. 12. Confusion matrices of localization in mobile ship environment.
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up to collect the CSIs. Moreover, because it is more energy
efficient to launch a system service than an application, the
consumption could be further reduced. To this end, according
to our evaluation, keeping running data collecting application
at backstage only leads to about 10% additional power con-
sumption, which is affordable for most COTS mobile devices.

VII. RELATED WORKS

In this part, we discuss the most relevant works on human
passive localization for a mobile ship environment.

Device-free localization. Several RSS-based [24] [25] [26]
and CSI-based [28] [?] [29] device-free localization and track-
ing techniques have been proposed as its easy to obtain in com-
mercial off-the-shelf WiFi NICs. The strategies can be divided
into two categories: (1) physical model based methods. To
localize a target, these works attempt to transform the channel
parameters to AoA, Doppler frequency shifts (DFS), or Time-
of-Flight (ToF). Among them, MaTrack [4] proposed a novel
Dynamic-MUSIC method to extract the object reflection path
and estimate the AoA for device-free localization. CARM [7]
and Widir [28] exploit DFS to estimate object movement
speed to achieve tracking, which however is blindness to
static objects. mmTrack [?] improves the ToF resolution by
leveraging the commodity 60GHz radio and achieves the
passively localizes multiple users. Authors in [?] concatenate
non-adjacent Wi-Fi channels to achieve higher ToF resolution.
Widir2.0 [3] build a novel unified model accounting for AoA,
ToF, DFS and propose joint parameters estimation using Space
Alternating Generalized Expectation-Maximization (SAGE)
algorithm. LiFS [6] leverages shadowing effect of targets near

line-of-sight of links and an accurate power fading model
to estimate the location. (2) machine learning-based method.
Based on supervision classifiers (e.g. KNN, SVM, etc.), a
signature-location relation model can be established in a site
survey. i.e., Nuzzer [25] utilized Wi-Fi RSS as fingerprints
to localize a person to one of the fingerprinted locations.
Generally speaking, supervised learning strategies can provide
better accuracy while require additional human effort to collect
labeled data. DeepFi [29] utilized deep neuron network to
train all the weights as fingerprints layer-by-layer to reduce
complexity.

Dynamic environment. Since WiFi-based localization sig-
natures are sensitive to environmental changes (e.g. people,
building layouts et al.), there are a few works consider dynamic
environments and efficiency data collection [31] [?], i.e.,
FitLoc [9] designed a transfer scheme using compress sensing
to make RSS fingerprint map shared by other different areas.
RASID [32] analyzed the RSS behavior and proposed a non-
parametric technique for adapting to environmental changes.
LEASE [33] employed a number of additional transmitters
and receivers to obtain up-to-date RSS values for updating
the maps. FitLoc [?] design a transfer scheme using compress
sensing to make RSS fingerprint map shared by other different
areas. The fingerprint data update overhead can be further
reduced via crowd-sourced measurements [?] [?]. AutoFi [8]
proposed an auto-calibration approach to collect the CSI of
the no-human environment after environment layout changes
and predict the fingerprints variation. These methods are not
working remarkably in the mobile environment compared with
general scenes since the impacts of the mobile environment are
complex and fast-changing.

VIII. CONCLUSION

In this paper, we design and implement one of the first
CSI-based passive human localization system for a mobile
ship environment. We propose a ship motion descriptor to
extract discriminative latent representation from complex ship
motions and design a fingerprint roaming model with unsu-
pervised learning strategy to automatically transfer the online
fingerprint to adapt to dynamic ship motions using unlabelled
onboard data. Real-world implementation and evaluation show
that MoLoc is able to efficiently improve localization accuracy
and significantly reduce the system deployment cost for a
mobile ship environment.
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